Chapter 5

Concurrent Models of Computation

Contents

5.1 Structure of Models ... 117
5.2 Synchronous-Reacti ve Models 118
 Sidebar: Actor Networks as a System of Equations 119
 Sidebar: Fixed-Point Semantics 120
5.2.1 Feedback Models ... 121
5.2.2 Well-Formed and Ill-Formed Models 123
5.2.3 Constructing a Fixed Point 125
5.3 Dataflow Models of Computation 127
 5.3.1 Dataflow Principles 127
 Sidebar: Synchronous-Reacti ve Languages 128
 5.3.2 Synchronous Dataflow 132
 5.3.3 Dynamic Dataflow 136
 5.3.4 Structured Dataflow 138
 5.3.5 Process Networks 139
5.4 Timed Models of Computation 141
 Sidebar: Petri Nets .. 142
 5.4.1 Time-Triggered Models 143
In sound engineering practice, systems are built by composing components. In order for the composition to be well understood, we need for the components to be well understood, and for the meaning of the interaction between components to be well understood. The previous chapter dealt with composition of finite state machines. With such composition, the components are well defined (FSMs), but there are many possible interpretations to the interaction between components. The meaning of a composition is referred to as its semantics.

This chapter focuses on the semantics of concurrent composition. The word “concurrent” literally means “running together.” A system is said to be concurrent if different parts of the system (components) conceptually operate at the same time. There is no particular order to their operations. The semantics of such concurrent operation can be quite subtle, however.

The components we consider in this chapter are actors, which react to stimulus at input ports and produce stimulus on output ports. In this chapter, we will be only minimally concerned with how the actors themselves are defined. They may be FSMs, hardware, or programs specified in an imperative programming language. We will need to impose some constraints on what these actors can do, but we need not constrain how they are specified.

The semantics of a concurrent composition of actors is governed by three sets of rules that we collectively call a model of computation (MoC). The first set of rules specify what constitutes a component. In this chapter, a component will be an actor with ports and a set of execution actions. The ports will be interconnected to provide for communication between actors, and the execution actions will be invoked by the environment of the actor to cause the actor to perform its function. For example, for FSMs, one action is provided that causes a reaction. Some MoCs require a more extensive set of execution actions.

We begin by laying out the common structure of models that applies to all MoCs studied in this chapter. We then proceed to describe a suite of MoCs.
5. STRUCTURE OF MODELS

In this chapter, we assume that models consist of fixed interconnections of actors like that shown in Figure 5.1(a). The interconnections between actors specify communication paths. The communication itself takes the form of a signal, which consists of one or more communication events. For the discrete signals of Section 2.1, for example, a signal s has the form of a function

$$s: \mathbb{R} \rightarrow V_s \cup \{\text{absent}\},$$

where V_s is a set of values called the type of the signal s. A communication event in this case is a non-absent value of s.

Figure 5.1: Any interconnection of actors can be modeled as a single (side-by-side composite) actor with feedback.
Example 5.1: Consider a pure signal \(s \) that is a discrete signal given by
\[
s(t) = \begin{cases}
 \text{present} & \text{if } t \text{ is a multiple of } P \\
 \text{absent} & \text{otherwise}
\end{cases}
\]
for all \(t \in \mathbb{R} \) and some \(P \in \mathbb{R} \). Such a signal is called a clock signal with period \(P \). Communication events occur every \(P \) time units.

In Chapter 1, a continuous-time signal has the form of a function
\[
s: \mathbb{R} \to V,
\]
in which case every one of the (uncountably) infinite set of values is a communication event. In this chapter, we will also encounter signals of the form
\[
s: \mathbb{N} \to V,
\]
where there is no time line. The signal is simply a sequence of values.

A communication event has a type, and we require that a connection between actors type check. That is, if an output port \(y \) with type \(V_y \) is connected to an input port \(x \) with type \(V_x \), then
\[
V_y \subseteq V_x.
\]

As suggested in Figure 5.1(b-d), any actor network can be reduced to a rather simple form. If we rearrange the actors as shown in Figure 5.1(b), then the actors form a side-by-side composition indicated by the box with rounded corners. This box is itself an actor \(F \) as shown in Figure 5.1(c) whose input is a three-tuple \((s_1, s_2, s_3) \) of signals and whose output is the same three-tuple of signals. If we let \(s = (s_1, s_2, s_3) \), then the actor can be depicted as in Figure 5.1(d), which of course hides all the complexity of the model.

Notice that Figure 5.1(d) is a feedback system. By following the procedure that we used to build it, every interconnection of actors can be similarly structured as a feedback system (see Exercise 1).

5.2 Synchronous-Reactive Models

In Chapter 4 we studied synchronous composition of state machines, but we avoided the nuances of feedback compositions. For a model described as the feedback sys-
5. CONCURRENT MODELS OF COMPUTATION

Actor Networks as a System of Equations

In a model, if the actors are determinate, then each actor is a function that maps input signals to output signal. For example, in Figure 5.1(a), actor A may be a function relating signals s_1 and s_2 as follows,

$$s_2 = A(s_1).$$

Similarly, actor B relates three signals by

$$s_1 = B(s_2, s_3).$$

Actor C is a bit more subtle, since it has no input ports. How can it be a function? What is the domain of the function? If the actor is determinate, then its output signal s_3 is a constant signal. The function C needs to be a constant function, one that yields the same output for every input. A simple way to ensure this is to define C so that its domain is a singleton set (a set with only one element). Let $\{\emptyset\}$ be the singleton set, so C can only be applied to \emptyset. The function C is then given by

$$C(\emptyset) = s_3.$$

Hence, Figure 5.1(a) gives a system of equations

$$s_1 = B(s_2, s_3)$$
$$s_2 = A(s_1)$$
$$s_3 = C(\emptyset).$$

The semantics of such a model, therefore, is a solution to such a system of equations. This can be represented compactly using the function F in Figure 5.1(d), which is

$$F(s_1, s_2, s_3) = (B(s_2, s_3), A(s_1), C(\emptyset)).$$

All actors in Figure 5.1(a) have output ports; if we had an actor with no output port, then we could similarly define it as a function whose codomain is $\{\emptyset\}$. The output of such function is the same, \emptyset, for all inputs.
Fixed-Point Semantics

In a model, if the actors are determinate, then each actor is a function that maps input signals to output signal. The semantics of such a model is a system of equations (see box on page 119) and the reduced form of Figure 5.1(d) becomes

\[s = F(s), \]

(5.1)

where \(s = (s_1, s_2, s_3) \). Of course, this equation only looks simple. Its complexity lies in the definition of the function \(F \) and the structure of the domain and range of \(F \).

Given any function \(F : X \rightarrow X \) for any set \(X \), if there is an \(x \in X \) such that \(F(x) = x \), then \(x \) is called a **fixed point**. Equation (5.1) therefore asserts that the semantics of a determinate actor network is a fixed point. Whether a fixed point exists, whether the fixed point is unique, and how to find the fixed point, all become interesting questions that are central to the model of computation.

In the SR model of computation, the execution of all actors is simultaneous and instantaneous and occurs at ticks of the global clock. If the actor is determinate, then each such execution implements a function called a **firing function**. For example, in the \(n \)-th tick of the global clock, actor \(A \) implements a function of the form

\[a_n : V_1 \cup \{\text{absent}\} \rightarrow V_2 \cup \{\text{absent}\} \]

where \(V_i \) is the type of signal \(s_i \). Hence, if \(s_i(n) \) is the value of \(s_i \) at the \(n \)-th tick, then

\[s_2(n) = a_n(s_1(n)). \]

Given such a firing function \(f_n \) for each actor \(F \) we can, just as in Figure 5.1(d) define the execution at a single tick by a fixed point,

\[s(n) = f_n(s(n)), \]

where \(s(n) = (s_1(n), s_2(n), s_3(n)) \) and \(f_n \) is a function is given by

\[f_n(s_1(n), s_2(n), s_3(n)) = (b_n(s_2(n), s_3(n)), a_n(s_1(n)), c_n(\emptyset)). \]

Thus, for SR, the semantics at each tick of the global clock is a fixed point of the function \(f_n \), just as its execution over all ticks is a fixed point of the function \(F \).
5. CONCURRENT MODELS OF COMPUTATION

Figure 5.2: A simple well-formed feedback model.

Theorem of Figure 5.1(d), the conundrum discussed in Section 4.1.5 takes a particularly simple form. If F is a state machine, then in order for it to react, we need to know its inputs at the time of the reaction. But its inputs are the same as its outputs, so in order for F to react, we need to know its outputs. But we can’t know its outputs until after it reacts.

As shown in Section 5.1 above, all actor networks can be viewed as feedback systems, so we really do have to resolve the conundrum. We do that now by giving a model of computation known as the synchronous-reactive (SR) MoC.

An SR model is a discrete system where signals are absent at all times except (possibly) at ticks of a global clock. Conceptually, execution of a model is a sequence of global reactions that occur discrete times, and at each such reaction, the reaction of all actors is simultaneous and instantaneous.

5.2.1 Feedback Models

We focus first on feedback models of the form of Figure 5.1(d), where F is a state machine. At the n-th tick of the global clock, we have to find the value of the signal s so that it is both a valid input and a valid output of the state machine, given its current state. Let $s(n)$ denote the value of the signal s at the n-th reaction. The goal is to determine, at each tick of the global clock, the value of $s(n)$.
Example 5.2: Consider first a simpler example shown in Figure 5.2. (This is simpler than Figure 5.1(d) because the signal \(s \) is a single pure signal rather than an aggregation of three signals.) If \(A \) is in state \(s1 \) when that reaction occurs, then the only possible value for \(s(n) \) is \(s(n) = \text{absent} \) because a reaction must take one of the transitions out of \(s1 \), and both of these transitions emit \(\text{absent} \). Moreover, once we know that \(s(n) = \text{absent} \), we know that the input port \(x \) has value \(\text{absent} \), so we can determine that \(A \) will transition to state \(s2 \).

If \(A \) is in state \(s2 \) when the reaction occurs, then the only possible value for \(s(n) \) is \(s(n) = \text{present} \), and the machine will transition to state \(s1 \). Therefore, \(s \) alternates between \(\text{absent} \) and \(\text{present} \). The semantics of machine \(A \) in the feedback model is therefore given by Figure 5.3.

In the previous example, it is important to note that the input \(x \) and output \(y \) have the same value in every reaction. This is what is meant by the feedback connection. Any connection from an output port to an input port means this. The value at the input port is the same as the value at the output port at all times.

Given a determinate state machine in a feedback model like that of Figure 5.2, in each state \(i \) we can define a function \(a_i \) that maps input values to output values,

\[
a_i: \{\text{present}, \text{absent}\} \rightarrow \{\text{present}, \text{absent}\},
\]
where the function depends on the state the machine is in. This function is defined by the update function.

Example 5.3: For the example in Figure 5.2, if the machine is in state s_1, then

$$a_{s_1}(x) = \text{absent}$$

for all $x \in \{\text{present}, \text{absent}\}$.

The function a_i is called the firing function for state i (see box on page 120). Given a firing function, to find the value $s(n)$ at the n-th reaction, we simply need to find a value $s(n)$ such that

$$s(n) = a_i(s(n)).$$

Such a value $s(n)$ is called a **fixed point** of the function a_i. It is easy to see how to generalize this so that the signal s can have any type, and even so that s is an aggregation of signals as in Figure 5.1(d) (see box on page 120).

5.2.2 Well-Formed and Ill-Formed Models

There are two potential problems that may occur when seeking a fixed point. First, there may be no fixed point. Second, there may be more than one fixed point. If either case occurs in a reachable state, we call the system **ill formed**. Otherwise, it is **well formed**.

Example 5.4: Consider machine B shown in Figure 5.4. In state s_1, we get the unique fixed point $s(n) = \text{absent}$. In state s_2, however, there is no fixed point. If we attempt to choose $s(n) = \text{present}$, then the machine will transition to s_1 and its output will be absent. But the output has to be the same as the input, and the input is present, so we get a contradiction. A similar contradiction occurs if we attempt to choose $s(n) = \text{absent}$.

Since state s_2 is reachable, this feedback model is ill formed.
5.2. SYNCHRONOUS-REACTIVE MODELS

Figure 5.4: An ill-formed feedback model that has no fixed point in state s_2.

Figure 5.5: An ill-formed feedback model that has more than one fixed point in state s_1.

Example 5.5: Consider machine C shown in Figure 5.5. In state s_1, both $s(n) = \text{absent}$ and $s(n) = \text{present}$ are fixed points. Either choice is valid. Since state s_1 is reachable, this feedback model is ill formed.

If in a reachable state there is more than one fixed point, we declare the machine to be ill formed. An alternative semantics would not reject such a model, but rather would declare it to be nondeterministic. This would be a valid semantics, but it would have the disadvantage that a composition of determinate state machines is not
assured of being determinate. In fact, C in Figure 5.5 is determinate, and under this alternative semantics, the feedback composition in the figure would not be determinate. Determinism would not be a compositional property. Hence, we prefer to reject such models.

5.2.3 Constructing a Fixed Point

If the type V_s of the signal s or the signals it is an aggregate of is finite, then one way to find a fixed point is by exhaustive search. Try all values. If exactly one fixed point is found, then the model is well formed. However, exhaustive search is expensive (and impossible if the types are not finite). We can develop instead a systematic procedure that for most, but not all well-formed models will find a fixed point. The procedure is as follows. For each reachable state i,

1. Start with $s(n)$ unknown.

2. Determine as much as you can about $f_i(s(n))$,

where f_i is the firing function in state i. Repeat until all values in $s(n)$ become known (whether they are present and what their values are), or until no more progress can be made. If unknown values remain, then reject the model.

This procedure may reject models that have a unique fixed point.
Example 5.6: Consider machine D shown in Figure 5.6. In state s_1, if the input is unknown, we cannot immediately tell what the output will be. We have to try all the possible values for the input to determine that in fact $s(n) = \text{absent}$ for all n.

A state machine for which the procedure works in all reachable states is said to be constructive (Berry, 1999). The example in Figure 5.6 is not constructive. For non-constructive machines, we are forced to do exhaustive search or to invent some more elaborate solution technique. Since exhaustive search is often too expensive for practical use, many SR languages and modeling tools (see box on page 128) reject non-constructive models.

Step 2 of the above procedure is key. How exactly can we determine the outputs if the inputs are not all known? This requires what is called a must-may analysis of the model. Examining the machine, we can determine what must be true of the outputs and what may be true of the outputs.

Example 5.7: The model is Figure 5.2 is constructive. In state s_1, we can immediately determine that the machine may not produce an output. Therefore, we can immediately conclude that the output is absent, even though the input is unknown. Of course, once we have determined that the output is absent, we now know that the input is absent, and hence the procedure concludes.

In state s_2, we can immediately determine that the machine must produce an output, so we can immediately conclude that the output is present.

The above procedure can be generalized to an arbitrary model structure. Consider for example Figure 5.1(a). There is no real need to convert it the form of Figure 5.1(d). Instead, we can just begin by labeling all signals unknown, and then in arbitrary order, examine each actor to determine whatever can be determined about the outputs, given its initial state. We repeat this until no further progress is made, at which point either all signals become known, or we can reject the model as either
ill-formed or non-constructive. Once we know all signals, then all actors can make
state transitions, and we repeat the procedure in the new state for the next reaction.

The constructive procedure above can be adapted to support nondeterminate ma-
chines (see Exercise 4). But now, things become even more subtle, and there are
variants to the semantics. One way to handle nondeterminism is that when execut-
ing the constructive procedure, when encountering a nondeterministic choice, make
an arbitrary choice. If the result leads to a failure of the procedure to find a fixed
point, then we could either reject the model (not all choices lead to a well-formed or
constructive model) or reject the choice and try again.

In the SR model of computation, actors react simultaneously and instantaneously, at
least conceptually. Achieving this with realistic computation requires tight coordi-
nation of the computation. We consider next a family of models of computation that
require less coordination.

5.3 Dataflow Models of Computation

In this section, we consider MoCs that much more asynchronous than SR; reactions
may occur simultaneously, or they may not, and whether they do or not is not an
essential part of the semantics. The decision as to when a reaction occurs can be
much more decentralized, and can in fact reside with each individual actor. When
reactions are dependent on one another, the dependence is due to the flow of data,
rather than to the synchrony of events. If a reaction of actor A requires data produced
by a reaction of actor B, then the reaction of A must occur after the reaction of B.
An MoC where such data dependencies are the key constraint on reactions is called
a dataflow model of computation. There are several variations of dataflow. We
consider a few of them here.

5.3.1 Dataflow Principles

In dataflow models, the signals providing communication between actors are se-
quen ces of message, where each message is called a token. That is, a signal s is a
partial function of the form

\[s : \mathbb{N} \rightarrow V_s, \]
Synchronous- Reactive Languages

The synchronous-reactive MoC has a history dating at least back to the mid-1980s when a suite of programming languages were developed. The term “reactive” comes from a distinction in computational systems between transformational systems, which accept input data, perform computation, and produce output data, and reactive systems, which engage in an ongoing dialog with their environment (Harel and Pnueli, 1985). Manna and Pnueli (1992) state

“The role of a reactive program ... is not to produce a final result but to maintain some ongoing interaction with its environment.”

The distinctions between transformational and reactive systems led to the development of a number of innovative programming languages. The synchronous languages (Benveniste and Berry, 1991) take a particular approach to the design of reactive systems, in which pieces of the program react simultaneously and instantaneously at each tick of a global clock. First among these languages are Lustre (Halbwachs et al., 1991), Esterel (Berry and Gonthier, 1992), and Signal (Guernic et al., 1991). Statecharts (Harel, 1987) and its implementation in Statemate (Harel et al., 1990) also have a strongly synchronous flavor.

SCADE (Berry, 2003) (safety critical application development environment), a commercial product of Esterel Technologies (which no longer exists as an independent company), builds on Lustre, borrows concepts from Esterel, and provides a graphical syntax, where state machines are drawn and actor models are composed in a similar manner to the figures in this text. One of the main attractions of synchronous languages is their strong formal properties that yield quite effectively to formal analysis and verification techniques. For this reason, SCADE models are used in the design of safety-critical flight control software systems for commercial aircraft made by Airbus.

The principles of synchronous languages can also be used in the style of a coordination language rather than a programming language, as done in Ptolemy II (Edwards and Lee, 2003) and ForSyDe (Sander and Jantsch, 2004). This allows for “primitives” in a synchronous system to be complex components rather than built-in language primitives. This approach allows for heterogeneous combinations of MoCs, since the complex components may themselves be given as compositions of further subcomponents under some other MoC.
where V_s is the type of the signal, and where the signal is defined on an initial segment $\{0, 1, \cdots, n\} \subset \mathbb{N}$, or (for infinite executions) on the entire set \mathbb{N}. Each element $s(n)$ of this sequence is a token. A (deterministic) actor will be described as a function that maps input sequences to output sequences. We will actually use two functions, an actor function, which maps entire input sequences to entire output sequences, and firing function, which maps a finite portion of the input sequences to output sequences, as illustrated in the following example.

Example 5.8: Consider an actor that has one input and one output port as shown below

![Actor Diagram](image)

Suppose that the input type is $V_x = \mathbb{R}$. Suppose that this is a Scale actor parameterized by a parameter $a \in \mathbb{R}$, similar to the one in Example 1.3, which multiplies inputs by a. Then

$$F(x_1, x_2, x_3, \cdots) = (ax_1, ax_2, ax_3, \cdots).$$

Suppose that when the actor fires, it performs one multiplication in the firing. Then the firing function f operates only on the first element of the input sequence, so

$$f(x_1, x_2, x_3, \cdots) = (ax_1).$$

The output is a sequence of length one.

As illustrated in the previous example, the actor function F combines the effects of multiple invocations of the firing function f. Moreover, the firing function can be invoked with only partial information about the input sequence to the actor. In the above example, the firing function can be invoked if one or more tokens are available on the input. The rule requiring one token is called a firing rule for the Scale actor. A firing rule specifies the number of tokens required on each input port in order to fire the actor.

The Scale actor in the above example is particularly simple because the firing rule
and the firing function never vary. Not all actors are so simple.

Example 5.9: Consider now a different actor Delay with parameter \(d \in \mathbb{R} \). The actor function is

\[
D(x_1, x_2, x_3, \cdots) = (d, x_1, x_2, x_3, \cdots).
\]

This actor prepends a sequence with a token with value \(d \). This actor has two firing functions, \(d_1 \) and \(d_2 \), and two firing rules. The first firing rule requires no input tokens at all and produces an output sequence of length one, so

\[
d_1(s) = (d),
\]

where \(s \) is a sequence of any length, including length zero (the empty sequence). This firing rule is initially the one used, and it is used exactly once. The second firing rule requires one input token and is used for all subsequent firings. It triggers the firing function

\[
d_2(x_1, \cdots) = (x_1).
\]

The actor consumes one input token and produces on its output the same token. The actor can be modeled by a state machine, as shown in Figure 5.7. In that figure, the firing rules are implicit in the guards. The tokens required to fire are exactly those required to evaluate the guards. The firing function \(d_1 \) is associated with state \(s_1 \), and \(d_2 \) with \(s_2 \).

When dataflow actors are composed, with an output of one going to an input of another, the communication mechanism is quite different from that of the previous MoCs considered in this chapter. Since the firing of the actors is asynchronous, a token sent from one actor to another must be buffered; it needs to be saved until the destination actor is ready to consume it. When the destination actor fires, it consumes one or more input tokens. After being consumed, a token may be discarded (meaning that the memory in which it is buffered can be reused for other purposes).

Dataflow models pose a few interesting problems. One question is how to ensure that the memory devoted to buffering of tokens is bounded. A dataflow model may be able to execute forever (or for a very long time); this is called an unbounded
5. CONCURRENT MODELS OF COMPUTATION

execution. For an unbounded execution, we may have to take measures to ensure that buffering of unconsumed tokens does not overflow the available memory.

Example 5.10: Consider the following cascade composition of dataflow actors:

Since A has no input ports, its firing rule is simple. It can fire at any time. Suppose that on each firing, A produces one token. What is to keep A from firing at a faster rate than B? Such faster firing could result in an unbounded build up of unconsumed tokens on the buffer between A and B. This will eventually exhaust available memory.

In general, for dataflow models that are capable of unbounded execution, we will need scheduling policies that deliver bounded buffers.

A second problem that may arise is deadlock. Deadlock occurs when there are cycles, as in Figure 5.1, and a directed loop has insufficient tokens to satisfy any of the firing rules of the actors in the loop. The Delay actor of Example 5.9 can help prevent deadlock because it is able to produce an initial output token without having any input tokens available. Dataflow models with feedback will generally require Delay actors (or something similar) in every cycle.
For general dataflow models, it can be difficult to tell whether the model will deadlock, and whether there exists an unbounded execution with bounded buffers. In fact, these two questions are undecidable, meaning that there is no algorithm that can answer the question in bounded time for all dataflow models (Buck, 1993). Fortunately, there are useful constraints that we can impose on the design of actors that make these questions decidable. We examine those constraints next.

5.3.2 Synchronous Dataflow

Synchronous dataflow (SDF) is a constrained form of dataflow where for each actor, every firing consumes a fixed number of input tokens on each input port and produces a fixed number of output tokens on each output port (Lee and Messerschmitt, 1987).\(^1\)

Consider a single connection between two actors, A and B, as shown in Figure 5.8.

The notation here means that when A fires, it produces \(M\) tokens on its output port, and when B fires, it consumes \(N\) tokens on its input port. \(M\) and \(N\) are positive integers. Suppose that A fires \(q_A\) times and B fires \(q_B\) times. All tokens that A produces are consumed by B if and only if the following balance equation is satisfied,

\[
q_A M = q_B N. \tag{5.2}
\]

Given values \(q_A\) and \(q_B\) satisfying (5.2), we can find a schedule that delivers unbounded execution with bounded buffers. An example of such a schedule fires A

\(^1\)Despite the term, synchronous dataflow is not synchronous in the sense of SR. There is no global clock in SDF models, and firings of actors are asynchronous. For this reason, some authors use the term static dataflow rather than synchronous dataflow. This does not avoid all confusion, however, because Dennis (1974) had previously coined the term “static dataflow” to refer to dataflow graphs where buffers could hold at most one token. Since there is no way to avoid a collision of terminology, we stick with the original “synchronous dataflow” terminology used in the literature. The term SDF arose from a signal processing concept, where two signals with sample rates that are related by a rational multiple are deemed to be synchronous.
repeatedly, \(q_A \) times, followed by \(B \) repeatedly, \(q_B \) times. It can repeat this sequence forever without exhausting available memory.

Example 5.11: Suppose that in Figure 5.8, \(M = 2 \) and \(N = 3 \). Then \(q_A = 3 \) and \(q_B = 2 \) satisfy (5.2). Hence, the following schedule can be repeated forever,

\[
A, A, A, B, B.
\]

An alternative schedule is also available,

\[
A, A, B, A, B.
\]

In fact, this latter schedule has an advantage over the former one in that it requires less memory. \(B \) fires as soon as there are enough tokens, rather than waiting for \(A \) to complete its entire cycle.

Another solution to (5.2) is \(q_A = 6 \) and \(q_B = 4 \). This solution includes more firings in the schedule than are strictly needed to keep the system in balance.

The equation is also satisfied by \(q_A = 0 \) and \(q_B = 0 \), but if the number of firings of actors is zero, then no useful work is done. Clearly, this is not a solution we want. Negative solutions are also not desirable.

Generally we will be interested in finding the least positive integer solution to the balance equations.

In a more complicated SDF model, every connection between actors results in a balance equation. Hence, the model defines a system of equations.
5.3. DATAFLOW MODELS OF COMPUTATION

Figure 5.10: An inconsistent SDF model.

Example 5.12: Figure 5.9 shows a network with three SDF actors. The connections x, y, and z, result in the following system of balance equations,

\begin{align*}
q_A &= q_B \\
2q_B &= q_C \\
2q_A &= q_C.
\end{align*}

The least positive integer solution to these equations is $q_A = q_B = 1$, and $q_C = 2$, so the following schedule can be repeated forever to get an unbounded execution with bounded buffers,

A, B, C, C.

The balance equations do not always have a non-trivial solution, as illustrated in the following example.

Example 5.13: Figure 5.10 shows a network with three SDF actors where the only solution to the balance equations is the trivial one, $q_A = q_B = q_C = 0$. A consequence is that there is no unbounded execution with bounded buffers for this model. It cannot be kept in balance.

An SDF model that has a non-zero solution to the balance equations is said to be consistent. If the only solution is zero, then it is inconsistent. An inconsistent model has no unbounded execution with bounded buffers.
Lee and Messerschmitt (1987) showed that if the balance equations have a non-zero solution, then they also have a solution where q_i is a positive integer for all actors i. Moreover, for connected models (where there is a communication path between any two actors), they gave a procedure for finding the least positive integer solution. Such a procedure forms the foundation for a scheduler for SDF models.

Consistency is sufficient to ensure bounded buffers, but it is not sufficient to ensure that an unbounded execution exists. In particular, when there is feedback, as in Figure 5.1, then deadlock may occur. Deadlock bounds an execution.

To allow for feedback, the SDF model treats Delay actors specially. Recall from Example 5.9, that the Delay actor is able to produce output tokens before it receives any input tokens, and then it subsequently behaves like a simple SDF actor that copies inputs to outputs. In the SDF MoC, the initial tokens are understood to be an initial condition for an execution, rather than part of the execution itself. Thus, the scheduler will ensure that all initial tokens are produced before the SDF execution begins. The Delay actor, therefore, can be replaced by initial tokens on a feedback connection. It need not perform any operation at all at run time.

Example 5.14: Figure 5.11 shows an SDF model with initial tokens on a feedback loop. The balance equations are

\[
\begin{align*}
3q_A &= 2q_B \\
2q_B &= 3q_A.
\end{align*}
\]

The least positive integer solution is $q_A = 2$, and $q_B = 3$, so the model is consistent. With four initial tokens on the feedback connection, as shown, the following schedule can be repeated forever,

\[A, B, A, B, B.\]
Were there any fewer than four initial tokens, however, the model would deadlock. If there were only three tokens, for example, then A could fire, followed by B, but in the resulting state of the buffers, neither could fire again.

In addition to the procedure for solving the balance equations, Lee and Messerschmitt (1987) gave a procedure that will either provide a schedule for an unbounded execution or would prove that no such schedule exists. Hence, both bounded buffers and deadlock are decidable for SDF models.

5.3.3 Dynamic Dataflow

Although the ability to guarantee bounded buffers and rule out deadlock is valuable, it comes at a price. SDF is not very expressive. It cannot directly express, for example, conditional firing, where an actor fires only if, for example, a token has a particular value. Such conditional firing is supported by a more general dataflow MoC known as **dynamic dataflow (DDF)**. Unlike SDF actors, DDF actors can have multiple firing rules, and they are not constrained to produce the same number of output tokens on each firing. The Delay actor of Example 5.9 is directly supported by the DDF MoC, without any need to special treatment of initial tokens. So are two basic actors known as **Switch** and **Select**, shown in Figure 5.12.

The Select actor on the left has three firing rules. Initially, it requires one token on the bottom input port. The type of that port is Boolean, so the value of the token must be `true` or `false`. If a token with value `true` is received on that input port, then the actor produces no output, but instead activates the next firing rule, which requires one token on the top left input port, labeled T. When the actor next fires, it consumes
5. CONCURRENT MODELS OF COMPUTATION

Figure 5.13: A DDF model that accomplishes conditional firing.

the token on the \(T \) port and sends it to the output port. If a token with value \(false \) is received on the bottom input port, then the actor activates a firing rule that requires a token on the bottom left input port labeled \(F \). When it consumes that token, it again sends it to the output port.

The \texttt{Switch} actor performs a complementary function. It has only one firing rule, which requires a single token on both input ports. The token on the left input port will be sent to either the \(T \) or the \(F \) output port, depending on the Boolean value of the token received on the bottom input port. Hence, \texttt{Switch} and \texttt{Select} accomplish conditional routing of tokens, as illustrated in the following example.

Example 5.15: Figure 5.13 uses \texttt{Switch} and \texttt{Select} to accomplish conditional firing. Actor \(B \) produces a stream of Boolean-valued tokens \(x \). This stream is replicated by the \texttt{fork} to provide the control inputs \(y \) and \(z \) to the \texttt{Switch} and \texttt{Select} actors. Based on the value of the control tokens on these streams, the tokens produced by actor \(A \) are sent to either \(C \) or \(D \), and the resulting outputs are collected and sent to \(E \). This model is the DDF equivalent of the familiar \texttt{if-then-else} programming construct in imperative languages.

Addition of \texttt{Switch} and \texttt{Select} to the actor library means that we can no longer always find a bounded buffer schedule, nor can be provide assurances that the model will not deadlock. \texttt{Buck (1993)} showed that bounded buffers and deadlock are un-
decidable for DDF models. Thus, in exchange for the increased expressiveness and flexibility, we have paid a price. The models are not as readily analyzed.

Switch and Select are the dataflow analogs of the goto statement in imperative languages. They provide low-level control over execution by conditionally routing tokens. Like goto statements, using them can result in models that are very difficult to understand. Dijkstra (1968) indicted the goto statement, discouraging its use, advocating instead the use of structured programming. Structured programming replaces goto statements with nested if-then-else, do-while, for loops, and recursion. Fortunately, structured programming is also available for dataflow models, as we discuss next.

5.3.4 Structured Dataflow

Figure 5.14 shows an alternative way to accomplish conditional firing that has many advantages over the DDF model in Figure 5.13. The grey box in the figure is an example of a higher-order actor called Conditional. A higher-order actor is an actor that has one or more models as parameters. In the example in the figure, Conditional is parameterized by two sub-models, one containing the actor C and the other containing the actor D. When Conditional fires, it consumes one token from each input port and produces one token on its output port, so it is an SDF actor. The action it performs when it fires, however, is dependent on the value of the token that arrives at the lower input port. If that value is true, then actor C fires. Otherwise,
actor D fires.

This style of conditional firing is called **structured dataflow**, because, much like structured programming, control constructs are nested hierarchically. Arbitrary data-dependent token routing is avoided (which is analogous to avoiding arbitrary branches using goto instructions). Moreover, when using such Conditional actors, the overall model is still an SDF model. In the example in Figure 5.14, every actor consumes and produces exactly one token on every port. Hence, the model is analyzable for deadlock and bounded buffers.

This style of structured dataflow was introduced in LabVIEW, a design tool developed by National Instruments (Kodosky et al., 1991). In addition to a conditional similar to that in Figure 5.14, LabVIEW provides structured dataflow constructs for iterations (analogous to for and do-while loops in an imperative language), for case statements (which have an arbitrary number of conditionally executed sub-models), and for sequences (which cycle through a finite set of submodels). It is also possible to support recursion using structured dataflow (Lee and Parks, 1995), but without careful constraints, boundedness again becomes undecidable.

5.3.5 Process Networks

A model of computation that is closely related to dataflow models is **Kahn process networks** (or simply, process networks or PN), named after Gilles Kahn, who introduced them (Kahn, 1974). The relationship between dataflow and PN is studied in detail by Lee and Parks (1995) and Lee and Matsikoudis (2009), but the short story is quite simple. Whereas in the dataflow MoC, actors fire, in PN, each actor executes concurrently in its own process. That is, instead of being defined by its firing rules and firing functions, a PN actor is defined by a (typically non-terminating) program that reads data tokens from input ports and writes data tokens to output ports. All actors execute simultaneously (conceptually; whether they actually execute simultaneously or are interleaved is irrelevant).

In the original paper, Kahn (1974) gave very elegant mathematical conditions on the actors that would ensure that a network of such actors was determinate, meaning that the sequence of tokens on every connection between actors is unique, and specifically independent of how the processes are scheduled. Thus, Kahn showed that concurrent execution was possible without nondeterminism.
Three years later, Kahn and MacQueen (1977) gave a simple, easily implemented mechanism for programs that ensures that the mathematical conditions are met to ensure determinism. A key part of the mechanism is to perform blocking reads on input ports whenever a process is to read input data. Specifically, blocking reads means that if the process chooses to access data through an input port, it issues a read request and blocks until the data becomes available. It cannot test the input port for the availability of data and then perform a conditional branch based on whether data are available, because such a branch would introduce schedule-dependent behavior. Blocking reads are closely related to firing rules; firing rules specify the tokens required to continue computing (with a new firing function); a blocking read specifies a single token required to continue computing (by continuing execution of the process). When a process writes to an output port, it performs a nonblocking write, meaning that the write succeeds immediately and returns. The process does not block to wait for the receiving process to be ready to receive data. This is exactly how writes to output ports work in dataflow MoCs as well. Thus, the only material difference between dataflow and PN is that with PN, the actor is not broken down into firing functions. It is designed as a continuously executing program.

Kahn and MacQueen (1977) called the processes in a PN network coroutines for an interesting reason. A routine or subroutine is a program fragment that is “called” by another program. The subroutine executes to completion before the calling fragment can continue executing. The interactions between processes in a PN model are more symmetric, in that there is no caller and callee. When a process performs a blocking read, it is in a sense invoking a routine in the upstream process that provides the data. Similarly, when it performs a write, it is in a sense invoking a routine in the downstream process to process the data. But the relationship between the producer and consumer of the data is much more symmetric than with subroutines.

Just like dataflow, the PN MoC poses challenging questions about boundedness of buffers and about deadlock. PN is expressive enough that these questions are undecidable. An elegant solution to the boundedness question is given by Parks (1995) and elaborated by Geilen and Basten (2003).

An interesting variant of process networks performs blocking writes rather than nonblocking writes. That is, when a process writes to an output port, it blocks until the receiving process is ready to receive the data. Such an interaction between processes is called a rendezvous. Rendezvous forms the basis for well known process formalisms such as communicating sequential processes (CSP) (Hoare, 1978) and the calculus of communicating systems (CCS) (Milner, 1980). It also forms the
5. CONCURRENT MODELS OF COMPUTATION

Figure 5.15: A Petri net model of two concurrent programs with a mutual exclusion protocol.

foundation for the **Occam** programming language (Galletly, 1996), which enjoyed some success for a period of time in the 1980s and 1990s for programming parallel computers.

In both the SR and dataflow models of computation considered so far, time plays a minor role. In dataflow, time plays no role. In SR, computation occurs simultaneously and instantaneously at each of a sequence of ticks of a global clock. Although the term “clock” implies that time plays a role, it actually does not. In the SR MoC, all that matters is the sequence. The physical time at which the ticks occur is irrelevant to the MoC. It is just a *sequence* of ticks. Many modeling tasks, however, require a more explicit notion of time. We examine next MoCs that have such a notion.

5.4 Timed Models of Computation

For **cyber-physical systems**, the time at which things occur in software can matter, because the software interacts with physical processes. In this section, we consider a few concurrent MoCs that explicitly refer to time. We describe three timed MoCs, each of which have many variants. Our treatment here is necessarily brief. A complete study of these MoCs would require a much bigger volume.
5.4. TIMED MODELS OF COMPUTATION

Petri Nets

Petri nets, named after Carl Adam Petri, are a popular modeling formalism related to dataflow (Murata, 1989). They have two types of elements, **places** and **transitions**, depicted as white circles and rectangles, respectively, as shown here:

![Petri Net Diagram]

A place can contain any number of tokens, depicted as black circles. A transition is **enabled** if all places connected to it as inputs contain at least one token. Once a transition is enabled, it can **fire**, consuming one token from each input place and putting one token on each output place. The state of a network, called its **marking**, is the number of tokens on each place in the network. The figure above shows a simple network with its marking before and after the firing of the transition. If a place provides input to more than one transition, then the network is nondeterministic. A token on that place may trigger a firing of either destination transition.

An example of a Petri net model is shown in Figure 5.15. This network models two concurrent programs with a **mutual exclusion** protocol. That is, each of the two programs has a section called a **critical section** with the constraint that only one of the programs can be in its critical section at any time. In the model, program A is in its critical section if there is a token on place \(a_2 \), and program B is in its critical section if there is a token on place \(b_1 \). The job of the mutual exclusion protocol is to ensure that these two places cannot simultaneously have a token.

If the initial marking of the model is as shown in the figure, then both top transitions are enabled, but only one can fire (there is only one token in the place labeled **mutex**). Which one fires is chosen nondeterministically. Suppose program A fires. After this firing, there will be a token in place \(a_2 \), so the corresponding bottom transition becomes enabled. Once that transition fires, the model returns to its initial marking. It is easy to see that the mutual exclusion protocol is correct in this model.

Unlike dataflow buffers, places do not preserve an ordering of tokens. Petri nets with a finite number of markings are equivalent to **FSMs**.
5. CONCURRENT MODELS OF COMPUTATION

5.4.1 Time-Triggered Models

Kopetz and Grunsteidl (1994) introduced mechanisms for triggering distributed computations periodically according to a distributed clock that measures the passage of time. The result is a system architecture called a time-triggered architecture (TTA). A key contribution was to show how a TTA could tolerate certain kinds of faults, such that failures in part of the system could not disrupt the behaviors in other parts of the system (see also Kopetz (1997) and Kopetz and Bauer (2003)). Henzinger et al. (2001) lifted the key idea of TTA to the programming language level, providing a well-defined semantics for modeling distributed time-triggered systems. Since then, these techniques have come into practical use in the design of safety-critical avionics and automotive systems, becoming a key part of standards such as FlexRay, a networking standard developed by a consortium of automotive companies.

A time-triggered MoC is similar to SR in that there is a global clock that coordinates the computation, but instead of the computations being simultaneous and instantaneous, the computations take time. Specifically, time-triggered MoCs associate with a computation a logical execution time. The inputs to the computation are provided at ticks of the global clock, but the outputs are not visible to other computations until the next tick of the global clock. Between ticks, there is no interaction between the computations, so concurrency difficulties such as race conditions do not exist. Since the computations are not (logically) instantaneous, there are no difficulties with feedback, and all models are constructive.

The Simulink modeling system, sold by The MathWorks, supports a time-triggered MoC, and in conjunction with another product called Real-Time Workshop, can translate such models in embedded C code. In LabVIEW, from National Instruments, timed loops accomplish a similar capability within a dataflow MoC.

In the simplest form, a time-triggered model specifies periodic computation with a fixed time interval (the period) between ticks of the clock. Giotto (Henzinger et al., 2001) supports modal models, where the periods differ in different modes. Some authors have further extended the concept of logical execution time to non-periodic systems (Liu and Lee, 2003; Ghosal et al., 2004).

Time triggered models are conceptually simple, but computations are tied closely to
Models of Time

How to model physical time is surprisingly subtle. How should we define simultaneity across a distributed system? A deeply thoughtful discussion of this question is considered by Galison (2003). What does it mean for one event to cause another? Can an event that causes another be simultaneous with it? Several thoughtful essays on this topic are given in Price and Corry (2007).

In Chapter 1, we assume time is represented by a variable \(t \in \mathbb{R} \) or \(t \in \mathbb{R}^+ \). This model is sometimes referred to as Newtonian time. It assumes a globally shared absolute time, where any reference anywhere to the variable \(t \) will yield the same value. This notion of time is often useful for modeling even if it does not perfectly reflect physical realities, but it has its deficiencies. Consider for example Newton’s cradle, a toy with five steel balls suspended by strings. If you lift one ball and release it, it strikes the second ball, which does not move. Instead, the fifth ball reacts by rising. Consider the momentum of the middle ball as a function of time. The middle ball does not move, so its momentum must be everywhere zero. But the momentum of the first ball is somehow transferred to the fifth ball, passing through the middle ball. So the momentum cannot be always zero. Let \(m : \mathbb{R} \rightarrow \mathbb{R} \) represent the momentum of this ball and \(\tau \) be the time of the collision. Then

\[
m(t) = \begin{cases} M & \text{if } t = \tau \\ 0 & \text{otherwise} \end{cases}
\]

for all \(t \in \mathbb{R} \). In a cyber-physical system, we may, however, want to represent this function in software, in which case a sequence of samples will be needed. But how can such sample unambiguously represent the rather unusual structure of this signal?

One option is to use superdense time (Manna and Pnueli, 1993; Maler et al., 1992; Lee and Zheng, 2005; Cataldo et al., 2006), where instead of \(\mathbb{R} \), time is represented by a set \(\mathbb{R} \times \mathbb{N} \). A time value is a tuple \((t, n) \), where \(t \) represents Newtonian time and \(n \) represents a sequence index within an instant. In this representation, the momentum of the middle ball can be unambiguously represented by a sequence where \(m(\tau, 0) = 0 \), \(m(\tau, 1) = M \), and \(m(\tau, 2) = 0 \). Such a representation also handles events that are simultaneous and instantaneous but also causally related.

Another alternative for time is partially ordered time, where two time values may or may not be ordered relative to each other. When there is a chain of causal relationships between them, then they must be ordered. Otherwise not.
5. CONCURRENT MODELS OF COMPUTATION

A periodic clock. The model becomes awkward when actions are not periodic. DE systems, considered next, encompass a richer set of timing behaviors.

5.4.2 Discrete Event Systems

Discrete-event systems (DE systems) have been used for decades as a way to build simulations for an enormous variety of applications, including for example digital networks, military systems, and economic systems. A pioneering formalism for DE models is due to Zeigler (1976), who called the formalism DEVS, abbreviating discrete event system specification. DEVS is an extension of Moore machines that associates a non-zero lifespan with each state, thus endowing the Moore machines with an explicit notion of the passage of time (vs. a sequence of reactions).

The key idea in a DE MoC is that events are endowed with a time stamp, a value in some model of time (see box on page 144). Normally, two distinct time stamps must be comparable. That is, they are either equal, or one is earlier than the other. A DE model is a network of actors where each actor reacts to input events in time-stamp order and produces output events in time-stamp order.

Example 5.16: The clock signal with period P of Example 5.1 consists of events with time stamps nP for all $n \in \mathbb{Z}$.

To execute a DE model, we can use an event queue, which is a list of events sorted by time stamp. The list begins empty. Each actor in the network is interrogated for any initial events it wishes to place on the event queue. These events may be destined for another actor, or they may be destined for the actor itself, in which case they will cause a reaction of the actor to occur at the appropriate time. The execution continues by selecting the earliest event in the event queue and determining which actor should receive that event. The value of that event (if any) is presented as an input to the actor, and the actor reacts (“fires”). The reaction can produce output events, and also events that simply request a later firing of the same actor at some specified time stamp.

At this point, variants of DE MoCs behave differently. Some variants, such as DEVS, require that outputs produced by the actor have a strictly larger time stamp.
than that of the input just presented. From a modeling perspective, every actor imposes some non-zero delay, in that its reactions (the outputs) become visible to other actors strictly later than the inputs that triggered the reaction. Other variants permit the actor to produce output events with the same time stamp as the input. That is, they can react instantaneously. As with SR models of computation, such instantaneous reactions can create significant subtleties because inputs become simultaneous with outputs.

The subtleties introduced by simultaneous events can be resolved by treating DE as a generalization of SR (Lee and Zheng, 2007). In this variant of a DE semantics, execution proceeds as follows. Again, we use an event queue and interrogate the actors for initial events to place on the queue. We select the event from the queue with the least time stamp, and all other events with the same time stamp, present those events to actors in the model as inputs, and then fire all actors in the manner of a constructive fixed-point iteration, as normal with SR. In this variant of the semantics, any outputs produced by an actor must be simultaneous with the inputs (they have the same time stamp), so they participate in the fixed point. If the actor wishes to produce an output event at a later time, it does so by requesting a firing at a later time (which results in the posting of an event on the event queue).

5.4.3 Continuous-Time Systems

In Chapter 1 we consider models of continuous-time systems based on ordinary differential equations (ODEs). Specifically, we consider equations of the form

$$\dot{x}(t) = f(x(t), t),$$

where $x: \mathbb{R} \rightarrow \mathbb{R}^n$ is a vector-valued continuous-time function. An equivalent model is an integral equation of the form

$$x(t) = x(0) + \int_0^t \dot{x}(\tau) d\tau \quad (5.3)$$

$$= x(0) + \int_0^t f(x(\tau), \tau) d\tau. \quad (5.4)$$

In Chapter 1, we show that a model of a system given by such ODEs can be described as an interconnection of actors, where the communication between actors is via continuous-time signals. Equation (5.4) can be represented as such an interconnection as shown in Figure 5.16, which conforms to the feedback pattern of Figure 5.1(d).
Example 5.17: The feedback control system of Figure 1.3, using the helicopter model of Example 1.3, can be redrawn as shown in Figure 5.17, which conforms to the pattern of Figure 5.16. In this case, \(x = \dot{\theta} \) is a scalar-valued continuous-time function (or a vector of length one). The function \(f \) is defined as follows,

\[
f(x(t), t) = \left(\frac{K}{I_{yy}} \right)(\psi(t) - x(t)),
\]

and the initial value of the integrator is

\[
x(0) = \dot{\theta}_y(0).
\]

Such models, in fact, are actor compositions under a **continuous-time model of computation**, but unlike the previous MoCs, this one cannot strictly be executed on

Probing Further: Discrete Event Semantics

Discrete-event models of computation have been a subject of study for many years, with several textbooks available (Zeigler et al., 2000; Cassandras, 1993; Fishman, 2001). The subtleties in the semantics are considerable (see Lee (1999); Cataldo et al. (2006); Liu et al. (2006); Liu and Lee (2008)). Instead of discussing the formal semantics here, we describe how a DE model is executed. Such a description is, in fact, a valid way of giving the semantics of a model. The description is called an **operational semantics** (Scott and Strachey, 1971; Plotkin, 1981).

DE models are often quite large and complex, so execution performance becomes very important. Because of the use of a single event queue, parallelizing or distributing execution of DE models can be challenging (Misra, 1986; Fujimoto, 2000). A recently proposed strategy called **PTIDES** (for programming temporally integrated distributed embedded systems), leverages network time synchronization to provide efficient distributed execution (Zhao et al., 2007; Lee et al., 2009). The claim is that the execution is efficient enough that DE can be used not only as a simulation technology, but also as an implementation technology. That is, the DE event queue and execution engine become part of the deployed embedded software. As of this writing, that claim has not been proven on any practical examples.
a digital computer. A digital computer cannot directly deal with the time continuum. It can, however, be approximated, often quite accurately.

The approximate execution of a continuous-time model is accomplished by a \textit{solver}, which constructs a numerical approximation to the solution of an ODE. The study of algorithms for solvers is quite old, with the most commonly used techniques dating back to the 19th century. Here, we will consider only one of the simplest of solvers, which is known as a \textit{forward Euler} solver.

A forward Euler solver estimates the value of \(x \) at fixed time points \(0, h, 2h, 3h, \ldots \), where \(h \) is called the \textbf{step size}. The integration is approximated as follows,

\[
\begin{align*}
x(h) & = x(0) + hf(x(0), 0) \\
x(2h) & = x(h) + hf(x(h), h) \\
x(3h) & = x(2h) + hf(x(2h), 2h) \\
& \cdots \\
x((k+1)h) & = x(kh) + hf(x(kh), kh).
\end{align*}
\]
5. CONCURRENT MODELS OF COMPUTATION

Figure 5.18: (a) Forward Euler approximation to the integration in (5.4), where x is assumed to be a scalar. (b) A better approximation that uses a variable step size and takes into account the slope of the curve.

This process is illustrated in Figure 5.18(a), where the “true” value of \dot{x} is plotted as a function of time. The true value of $x(t)$ is the area under that curve between 0 and t, plus the initial value $x(0)$. At the first step of the algorithm, the increment in area is approximated as the area of a rectangle of width h and height $f(x(0), 0)$. This increment yields an estimate for $x(h)$, which can be used to calculate $\dot{x}(h) = f(x(h), h)$, the height of the second rectangle. And so on.

You can see that the errors in approximation will accumulate over time. The algorithm can be improved considerably by two key techniques. First, a variable-step solver will vary the step size based on estimates of the error to keep the error small. Second, a more sophisticated solver will take into account the slope of the curve and use trapezoidal approximations as suggested in Figure 5.18(b). A family of such solvers known as Runge-Kutta solvers are widely used. But for our purposes here, it does not matter what solver is used. All that matters is that (a) the solver determines...
the step size, and (b) at each step, the solver performs some calculation to update the approximation to the integral.

When using such a solver, we can interpret the model in Figure 5.16 in a manner similar to SR and DE models. The f actor is memoryless, so it simply performs a calculation to produce an output that depends only on the input and the current time. The integrator is a state machine whose state is updated at each reaction by the solver, which uses the input to determine what the update should be. The state space of this state machine is infinite, since the state variable $x(t)$ is a vector of real numbers.

Hence, a continuous-time model can be viewed as an SR model with a time step between global reactions determined by a solver (Lee and Zheng, 2007). Specifically, a continuous-time model is a network of actors, each of which is a cascade composition of a simple memoryless computation actor and a state machine, and the actor reactions are simultaneous and instantaneous. The times of the reactions are determined by a solver. The solver will typically consult the actors in determining the time step, so that for example events like level crossings can be captured precisely. Hence, despite the additional complication of having to provide a solver, the mechanisms required to achieve a continuous-time model of computation are not much different from those required to achieve SR and DE.

A popular software tool that uses a continuous-time MoC is Simulink, from The MathWorks, which represents models similarly as block diagrams, which are interconnections of actors. Continuous-time models can also be simulated using the textual tool MATLAB from the same vendor. MATRIXx, from National Instruments, also supports graphical continuous-time modeling. Continuous-time models can also be integrated within LabVIEW models, either graphically or textually using the programming language MathScript.

5.5 Summary

This chapter has provided a whirlwind tour of a rather large topic, concurrent models of computation. It begins with synchronous-reactive models, which are closest to the synchronous composition of state machines considered in the previous chapter. It then considers dataflow models, where execution can be more loosely coordinated. Only data precedences impose constraints on the order of actor computations. The
chapter then concludes with a quick view of a few models of computation that explicitly include a notion of time. Such MoCs are particularly useful for modeling cyber-physical systems.
Exercises

1. Show how each of the following actor models can be transformed into a feedback system by using a reorganization similar to that in Figure 5.1(b). That is, the actors should be aggregated into a single side-by-side composite actor.

(a)

![Diagram](a)

(b)

![Diagram](b)

(c)

![Diagram](c)

2. Consider the following state machine in a feedback composition:

![Diagram](feedback_composition)

input: $x: \{1, 2, 3\}$
output: $y: \{1, 2, 3\}$

$(x = 1 \lor x = 3) / 2$
$(x = 1 \lor x = 2) / 3$
$(x = 2) / 2$
$(x = 1) / 1$
$x = 3 / 3$
$(x = 2 \lor x = 3) / 1$
5. CONCURRENT MODELS OF COMPUTATION

(a) Is it well-formed? Is it constructive?

(b) If it is well-formed and constructive, then find the output symbols for the first 10 reactions. If not, explain where the problem is.

(c) Show the composition machine, assuming that the composition has no input and that the only output is b.

3. For the following model, determine whether it is well formed and constructive, and if so, determine the sequence of values of the signals s_1 and s_2.

4. For the following model, determine whether it is well formed and constructive, and if so, determine the possible sequences of values of the signals s_1 and s_2. Note that machine A is nondeterministic.

5. Recall the traffic light controller of Figure 2.10. Consider connecting the outputs of this controller to a pedestrian light controller, whose FSM is given in Figure 4.10. Using your favorite modeling software that supports state machines (such as LabVIEW Statecharts, Simulink/Stateflow, or Ptolemy II), construct the composition of the above two FSMs along with a deterministic...
extended state machine modeling the environment and generating input symbols \(\text{timeR}, \text{timeG}, \text{timeY},\) and \(\text{isCar}\). For example, the environment FSM can use an internal counter to decide when to generate these symbols.

6. Consider the following SDF model:

![Diagram of SDF model](image)

The numbers adjacent to the ports indicate the number of tokens produced or consumed by the actor when it fires. Answer the following questions about this model.

(a) Let \(q_A\), \(q_B\), and \(q_C\) denote the number of firings of actors \(A\), \(B\), and \(C\), respectively. Write down the balance equations and find the least positive integer solution.

(b) Find a schedule for an unbounded execution that minimizes the buffer sizes on the two communication channels. What is the resulting size of the buffers?

7. For each of the following dataflow models, determine whether there is an unbounded execution with bounded buffers. If there is, determine the minimum buffer size.

(a)

![Diagram of dataflow model](image)

(b)

![Diagram of dataflow model](image)

where \(n\) is some integer.
(c) Where D produces an arbitrary boolean sequence.

(d) For the same dataflow model as in part (c), assume you can specify a periodic boolean output sequence produced by D. Find such a sequence that yields bounded buffers, give a schedule that minimizes buffer sizes, and give the buffer sizes.