Chapter 4

Composition of State Machines

Contents

4.1 Concurrent Composition ... 93
 4.1.1 Side-by-Side Synchronous Composition 94
 4.1.2 Side-by-Side Asynchronous Composition 97
 4.1.3 Shared Variables ... 98
 Sidebar: Scheduling Semantics 99
 4.1.4 Cascade Composition ... 102
 4.1.5 General Composition .. 106
4.2 Hierarchical State Machines 106
4.3 Summary .. 111
Exercises .. 112

State machines provide a convenient way to model behaviors of systems. One dis-
advantage that they have is that for most interesting systems, the number of states
is very large, often even infinite. Automated tools can handle large state spaces, but
humans have more difficulty with any direct representation of a large state space.

A time-honored principle in engineering is that complicated systems should be de-
scribed as compositions of simpler systems. This chapter gives a number of ways
to do this with state machines. The reader should be aware, however, that there
are many subtly different ways to compose state machines. Compositions that look
similar on the surface may mean different things to different people. The rules of
notation of a model are called its **syntax**, and the meaning of the notation is called its **semantics**. We will see that the same syntax can have many different semantics, which can cause no end of confusion.

Example 4.1: A now popular notation for concurrent composition of state machines called Statecharts was introduced by Harel (1987). Although they are all based on the same original paper, many variants of Statecharts have evolved (Beeck, 1994). These variants often assign different semantics to the same syntax.

For all discussions in this chapter, we will assume an **actor model** for extended state machines using the syntax summarized in Figure 4.1. The semantics of a single such state machine is described in Chapter 2. This chapter will discuss the semantics that can be assigned to compositions of multiple such machines.

The first composition technique we consider is concurrent composition. Two or more state machines react either simultaneously or independently. If the reactions are simultaneous, we call it **synchronous composition**. If they are independent, then

![Figure 4.1: Summary of notation for state machines used in this chapter.](image-url)
we call it **asynchronous composition**. But even within these classes of composition, many subtle variations in the semantics are possible. These variations mostly revolve around whether and how the state machines communicate and share variables.

The second composition technique we will consider is the use of hierarchy. Hierarchical state machines can also enable complicated systems to be described as compositions of simpler systems. Again, we will see that subtle differences in semantics are possible.

4.1 Concurrent Composition

To study concurrent composition of state machines, we will proceed through a sequence of patterns of composition. These patterns can be combined to build arbitrarily complicated systems. We begin with the simplest case, side-by-side composition, where the state machines being composed do not communicate. We then consider allowing communication through shared variables, showing that this creates significant subtleties that can complicate modeling. We then consider communication through ports, first looking at serial composition, then expanding to arbitrary interconnections. When practical, we consider both synchronous and asynchronous composition.

![Side-by-side composition of two actors](image)

Figure 4.2: Side-by-side composition of two actors.
4.1. CONCURRENT COMPOSITION

The first pattern of composition that we consider is side-by-side composition, illustrated for two actors in Figure 4.2. In this pattern, we assume that the inputs and outputs of the two actors are disjoint, i.e. that the state machines do not communicate. In the figure, actor A has input i_1 and output o_1, and actor B has input i_2 and output o_2. The composition of the two actors is itself an actor C with inputs i_1 and i_2 and outputs o_1 and o_2.\(^1\)

In the simplest scenario, if the two actors are extended state machines with variables, then those variables are also disjoint. We will later consider what happens when the two state machines share variables. Under synchronous composition, a reaction of C is a simultaneous reaction of A and B.

\(^1\)The composition actor C may rename these input and output ports, but here we assume it uses the same names as the component actors.
Example 4.2: Consider FSMs A and B in Figure 4.3. A has a single pure output a, and B has a single pure output b. The side-by-side composition C has two pure outputs, a and b. If the composition is synchronous, then on the first reaction, a will be \textit{absent} and b will be \textit{present}. On the second, reaction, it will be the reverse. On subsequent reactions, a and b will continue to alternate being present.

Synchronous side-by-side composition is simple for several reasons. First, recall from Section 2.3.2 that the environment determines when a state machine reacts. In synchronous side-by-side composition, then environment need not be aware that C is a composition of two state machines. Such compositions are \textbf{modular} in the sense that the composition itself becomes a component that can be further composed as if it were itself an atomic component.

Moreover, if the two state machines A and B are \textbf{determinate}, then the synchronous side-by-side composition is also determinate. We say that a property is \textbf{compositional} if a property held by the components is also a property of the composition. For synchronous side-by-side composition, determinacy is a compositional property.

In addition, a synchronous side-by-side composition of finite state machines is itself an FSM. A rigorous way to give the semantics of the composition is to define the single state machine for the composition. Suppose that as in Section 2.3.3, state machines A and B are given by the five tuples,

$$A = (\text{States}_A, \text{Inputs}_A, \text{Outputs}_A, \text{update}_A, \text{initialState}_A)$$

$$B = (\text{States}_B, \text{Inputs}_B, \text{Outputs}_B, \text{update}_B, \text{initialState}_B).$$

Then the synchronous side-by-side composition C is given by

$$\text{States}_C = \text{States}_A \times \text{States}_B$$

$$\text{Inputs}_C = \text{Inputs}_A \times \text{Inputs}_B$$

$$\text{Outputs}_C = \text{Outputs}_A \times \text{Outputs}_B$$

$$\text{initialState}_C = \text{initialState}_A, \text{initialState}_B)$$

and the update function is defined by

$$\text{update}_C((s_A,s_B),(i_A,i_B)) = ((s'_A,s'_B),(o_A,o_B)),$$
Figure 4.4: Single state machine giving the semantics of synchronous side-by-side composition of the state machines in Figure 4.3.

where

\[(s'_A, o_A) = \text{update}_A(s_A, i_A), \]

and

\[(s'_B, o_B) = \text{update}_B(s_B, i_B), \]

for all \(s_A \in \text{States}_A, s_B \in \text{States}_B, i_A \in \text{Inputs}_A, \) and \(i_B \in \text{Inputs}_B. \)

Recall that \(\text{Inputs}_A \) and \(\text{Inputs}_B \) are sets of valuations. Each valuation in the set is an assignment of values to ports. What we mean by

\[\text{Inputs}_C = \text{Inputs}_A \times \text{Inputs}_B \]

is that a valuation of the inputs of \(C \) must include both valuations for the inputs of \(A \) and the inputs of \(B. \)

As usual, the single FSM \(C \) can be given pictorially rather than symbolically, as illustrated in the next example.

Example 4.3: The synchronous side-by-side composition \(C \) in Figure 4.3 is given as a single FSM in Figure 4.4. Notice that this machine behaves exactly as described in Example 4.2. The outputs \(a \) and \(b \) alternate being present. Notice further that \((s1, s4) \) and \((s2, s3) \) are not reachable states.
4.1.2 Side-by-Side Asynchronous Composition

In an asynchronous composition of state machines, the component machines react independently. This statement is rather vague, and in fact, it has several different interpretations. Each interpretation gives a semantics to the composition. Key to each semantics is how to define a reaction of the composition C in Figure 4.2. Two possibilities are:

- **Semantics 1.** A reaction of C is a reaction of one of A or B, where the choice is nondeterministic.
- **Semantics 2.** A reaction of C is a reaction of A, B, or both A and B, where the choice is nondeterministic. A variant of this possibility might allow neither to react.

Semantics 1 is referred to as an **interleaving semantics**, meaning that A or B never react simultaneously. Their reactions are interleaved in some order.

A significant subtlety is that under these semantics machines A and B may completely miss input events. That is, an input to C destined for machine A may be present in a reaction where the nondeterministic choice results in B reacting rather than A. If this is not desirable, then some some control over scheduling (see sidebar on page 99) or synchronous composition becomes a better choice.

Example 4.4: For the example in Figure 4.3, semantics 1 results in the composition state machine shown in Figure 4.5. This machine is nondeterministic. From state (s_1, s_3), when C reacts, it can move to (s_2, s_3) and emit no output, or it can move to (s_1, s_4) and emit b. Note that if we had chosen semantics 2, then it would also be able to move to (s_2, s_4).

For asynchronous composition under semantics 1, the symbolic definition of C has the same definitions of $States_C$, $Inputs_C$, $Outputs_C$, and $initialState_C$ as for synchronous composition, given in (4.1) through (4.4). But the update function differs, becoming

$$update_C((s_A, s_B), (i_A, i_B)) = ((s'_A, s'_B), (o'_A, o'_B)),$$
4.1. CONCURRENT COMPOSITION

Figure 4.5: State machine giving the semantics of asynchronous side-by-side composition of the state machines in Figure 4.3.

where either

\[(s'_A, o'_A) = \text{update}_A(s_A, i_A) \text{ and } s'_B = s_B \text{ and } o'_B = \text{absent}\]

or

\[(s'_B, o'_B) = \text{update}_B(s_B, i_B) \text{ and } s'_A = s_A \text{ and } o'_A = \text{absent}\]

for all \(s_A \in \text{States}_A\), \(s_B \in \text{States}_B\), \(i_A \in \text{Inputs}_A\), and \(i_B \in \text{Inputs}_B\). What we mean by \(o'_B = \text{absent}\) is that all output ports of \(B\) are absent. Semantics 2 can be similarly defined (see Exercise 2).

4.1.3 Shared Variables

An extended state machine has local variables that can be read and written as part of taking a transition. Sometimes it is useful when composing state machines to allow these variables to be shared among a group of machines. In particular, such shared variables can be useful for modeling interrupts, studied in Chapter 8, and threads, studied in Chapter 9. However, considerable care is required to ensure that the semantics of the model conforms with that of the program. Many complications arise, including the memory consistency model and the notion of atomic operations.
Example 4.5: Consider two servers that can receive requests from a network. Each request requires an unknown amount of time to service, so the servers share a queue of requests. If one server is busy, the other server can respond to request, even if the request comes to the first server.

This scenario fits a pattern similar to that in Figure 4.2, where A and B

Scheduling Semantics

In the case of semantics 1 and 2 given in Section 4.1.2, the choice of which component machine reacts is nondeterministic. The model does not express any particular constraints. It is often more useful to introduce some scheduling policies, where the environment is able to influence or control the nondeterministic choice. This leads to two additional possible semantics for asynchronous composition:

- **Semantics 3.** A reaction of C is a reaction of one of A or B, where the environment chooses which of A or B reacts.

- **Semantics 4.** A reaction of C is a reaction of A, B, or both A and B, where the choice is made by the environment.

Like semantics 1, semantics 3 is an interleaving semantics.

In one sense, semantics 1 and 2 are more compositional than semantics 3 and 4. To implement semantics 3 and 4, a composition has to provide some mechanism for the environment to choose which component machine should react. This means that the hierarchy suggested in Figure 4.2 does not quite work. Actor C has to expose more of its internal structure than just the ports and the ability to react.

In another sense, semantics 1 and 2 are less compositional than semantics 3 and 4 because determinacy is not preserved by composition. A composition of determinate state machines is not a determinate state machine.

Notice further that semantics 1 is an abstraction of semantics 3 in the sense that every behavior under semantics 3 is also a behavior under semantics 1. This notion of abstraction is studied in detail in Chapter 12.

The subtle differences between these choices make asynchronous composition rather treacherous. Considerable care is required to ensure that it is clear which semantics is used.
are the servers. We can model the servers as state machines as shown in Figure 4.6. In this model, a shared variable _pending_ counts the number of pending job requests. When a request arrives at the composite machine C, one of the two servers is nondeterministically chosen to react, assuming asynchronous composition under semantics 1. If that server is idle, then it proceeds to serve the request. If the server is serving another request, then one of two things can happen: it can coincidentally finish serving the request it is currently serving and proceed to serve the new one, issuing the output _done_, or it can increment the count of pending requests. The choice between these is nondeterministic, to model the fact that the time it takes to service a request is unknown.

If C reacts when there is no request, then again either server A or B will
be selected nondeterministically to react. If the server that reacts is idle and there is one or more pending request, then the server transitions to serving and decrements the variable pending. If the server that reacts is not idle, then one of three things can happen. It may continue serving the current request, in which case it simply transitions on the self transition back to serving. Or it may finish serving the request, in which case it will transition to idle if there are no pending requests or transition back to serving and decrement pending if there are pending requests.

The model in the previous example exhibits many subtleties of concurrent systems. First, because of the interleaving semantics, accesses to the shared variable are atomic operations, something that is quite challenging to guarantee in practice, as discussed in Chapters 8 and 9. Second, the choice of semantics 1 is reasonable in this case because the input goes to both of the component machines, so regardless of which component machine reacts, no input event will be missed. However, this semantics would not work if the two machines had independent inputs, because then requests could be missed. Semantics 2 can help prevent that, but what strategy should be used by the environment to determine which machine reacts? What if the two independent inputs both have requests present at the same reaction of C? If we choose semantics 4 to allow both machines to react simultaneously, then what is the meaning when both machines update the shared variable?

Note further that choosing asynchronous composition under semantics 1 allows behaviors that do not make good use of idle machines. In particular, suppose that machine A is serving, machine B is idle, and a request arrives. If the nondeterministic choice results in machine A reacting, then it will simply increment pending. Not until the nondeterministic choice results in B reacting will the idle machine be put to use. In fact, semantics 1 allows behaviors that never use one of the machines.

Shared variables may be used in synchronous compositions as well, but sophisticated subtleties again emerge. In particular, what should happen if in the same reaction one machine reads a shared variable to evaluate a guard and another machine writes to the shared variable? Do we require the write before the read? What if the transition doing the write to the shared variable also reads the same variable in its guard expression? One possibility is to choose a synchronous interleaving semantics, where the component machines react in arbitrary order, chosen nondeterministically. This strategy has the disadvantage that a composition of two deterministic
machines may be nondeterministic. An alternative version of the synchronous inter-leaving semantics has the component machines react in a fixed order determined by the environment or by some additional mechanism such as priority.

The difficulties of shared variables, particularly with asynchronous composition, reflect the inherent complexity of concurrency models with shared variables. Clean solutions require a more sophisticated semantics, to be discussed in Chapter 5. Specifically, in that chapter, we will explain the synchronous-reactive model of computation, which gives a synchronous composition semantics that is reasonably compositional.

4.1.4 Cascade Composition

Consider two state machines A and B that are composed as shown in Figure 4.7. The output of machine A feeds the input of B. This style of composition is called cascade composition or serial composition.

In the figure, output port o_1 from A feeds events to input port i_2 of B. Assume the data type of o_1 is V_1 and the data type of i_2 is V_2. Then a requirement for this composition to be valid is that

$$V_1 \subseteq V_2.$$

This asserts that any output produced by A on port o_1 is an acceptable input to B on port i_2. The composition type checks.

For cascade composition, if we wish the composition to be asynchronous, then we need to introduce some machinery for buffering the data that is sent from A to B. We

![Figure 4.7: Cascade composition of two actors.](image)
defer discussion of such asynchronous composition to Chapter 5, where dataflow and process network models of computation will provide such asynchronous composition. In this chapter, we will only consider synchronous composition.

In synchronous composition of the cascade structure of Figure 4.7, a reaction of C consists of a reaction of both A and B, where A reacts first, produces its output (if any), and then B reacts. Logically, we view this as occurring in zero time, so the two reactions are in a sense simultaneous and instantaneous. But they are causally related in that the outputs of A can affect the behavior of B.

Figure 4.8: Example of a cascade composition of two FSMs.

Figure 4.9: Semantics of the cascade composition of Figure 4.8, assuming synchronous composition.
4.1. CONCURRENT COMPOSITION

Example 4.6: Consider the cascade composition of the two FSMs in Figure 4.8. Assuming synchronous semantics, the meaning of a reaction of C is given in Figure 4.9. That figure makes it clear that the reactions of the two machines are simultaneous and instantaneous. When moving from the initial state (s_1, s_3) to (s_2, s_4) (which occurs when the input a is absent), the composition machine C does not pass through (s_2, s_3)! In fact, (s_2, s_3) is not a reachable state! In this way, a single reaction of C encompasses a reaction of both A and B.

Example 4.7: Recall the traffic light model of Figure 2.10. Suppose that we wish to compose this with a pedestrian crossing light, like that shown in Figure 4.10. The output $sigG$ of the traffic light can provide the input $sigG$ of the pedestrian light. Under synchronous cascade composition, the meaning of the composite is given in Figure 4.11. Note that unsafe states, such as $(green, green)$, which is the state when both cars and pedestrians have a green light, are not reachable states.

variable: $pcount$: $\{0, \ldots, 55\}$
input: $sigR$: pure
outputs: $pedG, pedR$: pure

Figure 4.10: A model of a pedestrian crossing light, to be composed in a synchronous cascade composition with the traffic light model of Figure 2.10.
In its simplest form, cascade composition implies an ordering of the reactions of the components. Since this ordering is well defined, we do not have as much difficulty with shared variables as we did with side-by-side composition. However, we will see that in more general compositions, the ordering is not so simple.
4.2. HIERARCHICAL STATE MACHINES

Figure 4.12: Arbitrary interconnections of state machines are combinations of side-by-side and cascade compositions, possibly creating cycles, as in this example.

4.1.5 General Composition

Side-by-side and cascade composition provide most of the basic building blocks for building more complex compositions of machines. Consider for example the composition in Figure 4.12. A_1 and A_3 are a side-by-side composition that together define a machine B. B and A_2 are a cascade composition, with B feeding events to A_2. However, B and A_2 are also a cascade composition in the opposite order, with A_2 feeding events to B. Cycles like this are called feedback, and they introduce a conundrum; which machine should react first, B or A_2? This conundrum will be resolved in the next chapter when we explain the synchronous-reactive model of computation.

4.2 Hierarchical State Machines

In 1987, David Harel introduced a hierarchical FSM notation called Statecharts that has since become quite popular (Harel, 1987). Statecharts combine two key elements, synchronous concurrent composition and hierarchical state machines. We have already begun the discussion of synchronous concurrent composition (to be concluded in the next chapter). In this section, we consider hierarchical state machines. There are many variants of Statecharts, often with subtle semantic differences between them Beeck (1994). Here, we will focus on some of the simpler aspects only, and we will pick a particular semantic variant.

The key idea in hierarchical state machines is that a state can have a state refinement.
4. COMPOSITION OF STATE MACHINES

Figure 4.13: In a hierarchical FSM, a state may have a refinement that is another state machine.

In Figure 4.13, state B has a refinement that is another FSM with two states, C and D. What it means for the machine to be in state B is that it is in one of C or D.

The meaning of the hierarchy in Figure 4.13 can be understood by comparing it to the equivalent flattened FSM in Figure 4.14. The machine starts in state A. When guard g_2 evaluates to true, the machine transitions to state B, which means to transition to state C, the initial state of the refinement. Upon taking this transition, the machine performs action a_2, which may produce an output event or set a variable (if this is an extended state machine).
There are then two ways to exit C. Either guard g_1 evaluates to true, in which case the machine exits B and returns to A, or guard g_4 evaluates to true and the machine transitions to D. A subtle question is what happens if both guards g_1 and g_4 evaluate to true. Different variants of Statecharts may make different choices at this point. It seems reasonable that the machine should end up in state A, but which of the actions should be performed, a_4, a_1, or both? Such subtle questions help account for the proliferation of different variants of Statecharts.

We choose a particular semantics that has attractive modularity properties (Lee, 2009c). In this semantics, a reaction of a hierarchical FSM is defined in a depth-first fashion. The deepest refinement of the current state reacts first, then its container state machine, then its container, etc. In Figure 4.13, this means that if the machine is in state B (which means that it is in either C or D), then the refinement machine reacts first. If it is C, and guard g_4 is true, the transition is taken to D and action a_4 is performed. But then, as part of the same reaction, the top-level FSM reacts. If guard g_1 is also true, then the machine transitions to state A. It is important that logically these two transitions are simultaneous and instantaneous, so the machine does not actually go to state D. Nonetheless, action a_4 is performed, and so is action a_1. This combination corresponds to the topmost transition of Figure 4.14.

Another subtlety that arises is that if two actions are performed in the same reaction, they may conflict. For example, two actions may write different values to the same output port. Or they may set the same variable to different values. Our choice is that the actions are performed in sequence, as suggested by the semicolon in the action $a_4; a_1$. As in an imperative language like C, the semicolon denotes a sequence. As with an imperative language, if the two actions conflict, the later one dominates.

Such subtleties can be avoided using a preemptive transition, shown in Figure 4.15, which has the semantics shown in Figure 4.16. The guards of a preemptive transition are evaluated before the refinement reacts, and if any guard evaluates to true, the refinement does not react. As a consequence, if the machine is in state B and g_1 is true, then neither action a_3 nor a_4 is performed. A preemptive transition is shown with a (red) circle at the originating point of the transition.

Notice in Figures 4.13 and 4.14 that whenever the machine enters B, it always enters C, never D, even if it was previously in D when leaving B. The transition from A to B is called a reset transition because the destination refinement is reset to its initial state, regardless of where it had previously been. A reset transition is indicated in our notation with a hollow arrowhead at the end of a transition.
In Figure 4.17, the transition from \(A \) to \(B \) is a **history transition**, an alternative to a reset transition. In our notation, a solid arrowhead denotes a history transition. It may also be marked with an “H” for emphasis. When a history transition is taken, the destination refinement resumes in whatever state it was last in (or its initial state on the first entry).

The semantics of the history transition is shown in Figure 4.18. The initial state is labeled \((A, C)\) to indicate that the machine is in state \(A \) and if and when it next enters \(B \) it will go to \(C \). The first time it goes to \(B \), it will be in the state labeled \((B, C)\) to indicate that it is in state \(B \) and, more specifically, \(C \). If it then transitions to \((B, D)\), and then back to \(A \), it will end up in the state labeled \((A, D)\), which means it is in state \(A \), but if and when it next enters \(B \) it will go to \(D \). That is, it remembers the history, specifically where it was when it left \(B \).
As with concurrent composition, hierarchical state machines admit many possible meanings. The differences can be subtle. Considerable care is required to ensure that models are clear and that their semantics match what is being modeled.
4.3 Summary

Any well engineered system is a composition of simpler components. In this chapter, we have considered two forms of composition of state machines, concurrent composition and hierarchical composition. For concurrent composition, we introduced both synchronous and asynchronous composition, but did not complete the story. For synchronous composition, significant subtleties arise when there is cyclic communication or shared variables. For asynchronous composition, communication via ports requires additional mechanisms that are not (yet) part of our model of state machines. Even without communication via ports, significant subtleties arise because there are several possible semantics for asynchronous composition, and each has strengths and weaknesses. One choice of semantics may be suitable for one application and not for another. These subtleties motivate the topic of the next chapter, which provides more structure to concurrent composition and resolves most of these questions (in a variety of ways).

For hierarchical composition, we focus on a style originally introduced by Harel (1987) known as Statecharts. We specifically focus on the ability for states in an FSM to have refinements that are themselves state machines. The reactions of the refinement FSMs are composed with those of the machine that contains the refinements. Again we consider a few of the many possible semantics.
Exercises

1. Consider the extended state machine model of Figure 2.8 for the garage counter. Suppose that the garage has two distinct entrance and exit points. Construct a side-by-side concurrent composition of two counters that share a variable c that keeps track of the number of cars in the garage. Specify whether you are using synchronous or asynchronous composition, and define exactly the semantics of your composition by giving a single machine modeling the composition. If you choose synchronous semantics, explain what happens if the two machines simultaneously modify the shared variable. If you choose asynchronous composition, explain precisely which variant of asynchronous semantics you have chosen and why. Is your composition machine determinate?

2. For semantics 2 in Section 4.1.2, give the five tuple for a single machine representing the composition C,

$$(\text{States}_C, \text{Inputs}_C, \text{Outputs}_C, \text{initialState}_C, \text{update}_C)$$

for the side-by-side asynchronous composition of two state machines A and B. Your answer should be in terms of the five-tuple definitions for A and B,

$$(\text{States}_A, \text{Inputs}_A, \text{Outputs}_A, \text{initialState}_A, \text{update}_A)$$

and

$$(\text{States}_B, \text{Inputs}_B, \text{Outputs}_B, \text{initialState}_B, \text{update}_B)$$

3. Consider the following synchronous composition of two state machines A and B:
Construct the single machine C representing the composition. Which states of the composition are unreachable?

4. Consider the following hierarchical state machine:

```
input: a: pure
output: b: pure
```

Construct an equivalent flat FSM giving the semantics of the hierarchy. Describe in words the input/output behavior of this machine. Is there a simpler machine that exhibits the same behavior? (Note that equivalence relations between state machines are considered in Chapter 12, but here, you can use intuition and just consider what the state machine does when it reacts.)