32feet.NET — User’s Guide

132feet.NET — User’s Guide

Supported hardware and software
1
Referencing the library
1
OBEX — object transfer
2
Server side
2
Brecham.Obex
3
General Bluetooth connections
3
DeviceName and discovery
3
Server side
3
Errors
4
General IrDA connections
4
Bluetooth settings, device information and bonding etc
4
Peer device info
4
Local Radio information
5
Bluetooth serial-port mapping
5
Bluetooth SDP — Service Discovery Protocol
5

Supported hardware and software

The library is supported both in a version for desktop Windows, and in versions for NETCFv1 and NETCFv2. On both platforms various companies have provided software protocol stack software to use Bluetooth hardware. For instance, on desktop Windows there are well known stacks from Microsoft, Widcomm (now Broadcom) and Toshiba. On CE platforms there are also stacks from Microsoft and Widcomm/Broadcomm — to visually identify which stack is installed see http://www.peterfoot.net/VisuallyIdentifyYourBluetoothStack.aspx. On both platforms only the Microsoft stack is supported.

On a device where there is no Bluetooth hardware connected, or a non-Microsoft stack is present the library will obviously not function. Opening a socket will fail with an exception, and getting the list of local radios (BluetoothRadio.AllRadios) will return a zero length array, and getting the primary radio (BluetoothRadio.PrimaryRadio) will return null/Nothing, thus code like the following will fail with a NullReferenceException.

BluetoothRadio.PrimaryRadio.Mode = RadioMode.Discoverable

On desktop Windows it is generally possible to disable the third-party stack and install the Microsoft stack. The document Belkin F8T012 and Microsoft Stack downloadable from http://32feet.net/files/folders/1118/download.aspx describes how to install the Microsoft stack, and also includes the steps necessary to install a bluetooth device that Windows wasn’t originally aware of.
On machines with the Toshiba software, from Add/Remove programs remove Bluetooth Stack for Windows by Toshiba, then run the C:\TOSHIBA\MS_Bluetooth\BtMon2Inst.exe installer to install the BT monitor, and finally reboot the machine, whereupon the system will detect the radio and install the necessary Microsoft-supplied drivers as above.
Finally note that the Microsoft XP stack only supports one attached radio. When I have two dongles attached I see an event log warning from BTHUSB with message “Only one active Bluetooth radio is supported at a time.”

Referencing the library
The library is provided as an assembly with name InTheHand.Net.Personal.dll. The installer arranges that it can be selected directly from Visual Studio’s Add Reference dialog.
[image: image1.png]
Three versions of the library are provided, one each for use with: desktop (Win32) CLR, NETCFv2, and NETCFv1 applications. They are called XP2, CE2 and CE1, and are installed in directories with those names. The correct one for the project type is listed in the Add Reference dialog as above.
Note: At the current time the CE1 library does not work if called from a NETCFv2 application.
OBEX — object transfer

If you want to transfer an file or other object using the standard service as used by Windows’ Wireless Link / Bluetooth File Transfer Wizard, Palm’s Beam, Nokia’s Send via Infrared, then use the OBEX protocol. On the client-side one can use code like the following.

' The host part of the URI is the device address, e.g. IrDAAddress.ToString(),
' and the file part is the OBEX object name.
Dim uri As New Uri("obex://112233445566/HelloWorld.txt")
Dim req As New ObexWebRequest(uri)
req.ReadFile("Hello World.txt")
Dim rsp As ObexWebResponse = req.GetResponse()
Console.WriteLine("Response Code: {0} (0x{0:X})", rsp.StatusCode)

See also the ObexPushApplication and ObexPushVB sample programs.

Only the PUT operation is supported, GET is not, nor is changing folders or getting a folder listing. There are some issue with handling file names that include non-English characters, and in the previous version connections to some device types failed.

Note that unlike the framework’s HttpWebResponse class etc, which signals an error by throwing a WebException, the ObexWebRequest class signals an error by returning an error status code in ObexWebResponse. Status code BadRequest indicates an error at connect time, in the network connection, the OBEX connection or even in the format or content of the URI. Status code XXXX indicates an error during the transfer. The new ObexWebRequest2 class behaves like the framework classes, throwing a WebException and it includes the original error as the InnerException property.
Server side

Is also supported. Use code like the following.

Dim lsnr As New ObexListener(ObexTransport. Bluetooth)
lsnr.Start()
' For each connection
Dim ctx As ObexListenerContext = lsnr.GetContext()
Dim req As ObexListenerRequest = ctx.Request
Dim pathSplits() As String = req.RawUrl.Split('/')
Dim filename As String = pathSplits(pathSplits.Length – 1)
req.WriteFile(filename)
'
lsnr.Stop()

See also the DesktopListener and DeviceListener sample programs.

Note that only one OBEX server can be active on a particular protocol at any time. If another server — for instance the operation-system supplied server — is active then the ObexListener will either fail at start-up (likely for IrDA), or will simply never receive any connections (likely for Bluetooth).

On desktop Windows the IrDA OBEX server is implemented by the Infrared Monitor/irmon service, so stop/disable that service to use your own server. The supplied Bluetooth OBEX server is a windows application that the user has to run manually, so there should be no general conflict.

On Windows CE the system has a running OBEX server over both IrDA and Bluetooth which can be disabled by unchecking “Receive all incoming beams.” on the Settings > Connections > Beam control panel.
Brecham.Obex

This is a separate library also available from the 32feet.net website. It provides very complete OBEX support: PUT, GET, SETPATH, and Folder Listings. It can be called in an asynchronous manner to allow progress monitoring etc. There is also an open-source library using it to provide server functionality.

General Bluetooth connections

The library includes the BluetoothClient, BluetoothAddress, BluetoothEndPoint, and BluetoothListener classes. So, to connect to the Serial port service on a particular peer device, use code like the following.

Dim addr As BluetoothAddress _
 = BluetoothAddress.Parse("001122334455")
'
Dim ep As New BluetoothEndPoint(addr, BluetoothService.SerialPort)
Dim cli As New BluetoothClient
cli.Connect(ep)
Dim peerStream As Stream = cli.GetStream()
peerStream.Write/Read ...

Of course one can discover and select the peer device at runtime, either discovering the devices and selecting one in code, or displaying the UI device selection dialog. One would use code like the following, respectively.

Dim cli As New BluetoothClient
Dim peers() As BluetoothDeviceInfo = cli.DiscoverDevices()
Dim device As BluetoothDeviceInfo = ... select one of peer()...
Dim addr As BluetoothAddress = device.DeviceAddress
...

and

Dim dlg As New SelectBluetoothDeviceDialog
Dim result As DialogResult = dlg.ShowDialog(Me)
If result <> DialogResult.OK Then
 Return
End If
Dim device As BluetoothDeviceInfo = dlg.SelectedDevice
Dim addr As BluetoothAddress = device.DeviceAddress
...

Finally, the discovered devices can be added to a Windows Form’s control with Data Binding, using code like the following, which uses a drop-down list box.

Dim cli As New BluetoothClient
Dim peers() As BluetoothDeviceInfo = cli.DiscoverDevices()
Me.ListBox1.DisplayMember = "DeviceName"
Me.ListBox1.ValueMember = Nothing
Me.ListBox1.DataSource = peers

DeviceName and discovery

Note, that due the way in which Bluetooth device discovery works, the existence and address of a device is known first, but a separate query has to be carried out to find whether the device also has a name. One can also see this in the Windows’ Bluetooth device dialogs where the device appears first with its address and the name is later updated.

This means that if a device is discovered afresh then the BluetoothDeviceInfo.DeviceName property might return only a text version of the device’s address and not its name. To see the name, wait for some time and access this property again having called BluetoothDeviceInfo.Refresh in the meantime.
Server side

The BluetoothListener class provides server-sides connections.

Bluetooth applications/services are identified and registered by UUID (Universally Unique Id), a 128-bit value that is represented by the System.Guid class in .NET. If one is creating a new service then a new UUID should be created at design time and entered into the two applications’ source code, a new value can be created either by calling Guid.NewValue or using the guidgen.exe Windows SDK program — in Visual Studio access it with menu item Tools, “Create GUID”.

One would thus use code like the following.

Class MyConsts
 Shared ReadOnly MyServiceUuid As Guid _
 = New Guid("{00112233-4455-6677-8899-aabbccddeeff}")
End Class

 ...
 Dim lsnr As New BluetoothListener(MyConsts.MyServiceUuid)
 lsnr.Start()
 ' Now accept new connections, perhaps using the thread pool to handle each
 Dim conn As New BluetoothClient = lsnr.AcceptBluetoothClient()
 Dim peerStream As Stream = conn.GetStream()
 ...

One can also pass the BluetoothListener a custom Service Record (Service Discovery Protocol record), and/or set Class of Service bit(s).

Note that unlike with TCP/IP and IrDA, if another server is already listening on a given UUID, then no error occurs, but the first running server will receive all connections.
Errors

The list of error codes used by Bluetooth sockets is described at “Bluetooth and connect” http://msdn2.microsoft.com/en-us/library/aa362901.aspx for the desktop, and at “”

General IrDA connections

The IrDA classes are quite similar to the Bluetooth ones. In IrDA, a service / application is identified by a textual Service Name. One can thus use code like the following.

This sample automatically chooses the (hopefully) single device in range.

Dim cli As New IrDAClient("MyCustomServiceName") 'Or "OBEX", "IrDA:IrCOMM" etc
...

Server side.

Dim lsnr As New IrDAListener("MyCustomServiceName")
lsnr.Start()
...

The DiscoverDevices method is present on IrDAClient too, but there is no equivalent to the SelectBluetoothDeviceDialog for IrDA currently.

The two connection modes IrCOMM and IrLMP (aka IrLPT) can be set by socket option. See the IrDAServiceClient samples or the samples on Alan’s website http://www.alanjmcf.me.uk/
Bluetooth settings, device information etc

Peer Device information
As seen above, the Bluetooth discovery operation returns an array of type BluetoothDeviceInfo; as well as providing the Bluetooth Device Address this class also provides access to the device’s name, its class-of-device bits, its SDP service records, the RSSI measurement, the time the device was last connected to, whether it was remembered from a previous discovery process, and whether it is authenticated etc.

In particular, the RSSI property is only supported on the WM6 platforms, devices known to support it include the HTC Trinity and the Symbol MC35; it is not supported on desktop Windows. There is also a LastSeen property which reports the value provided by desktop Windows — however the value seems broken however, always just being the time of the discovery operation.

The SDP lookup operation GetServiceRecords can be used to find the details of the services running on a peer device —the SdpBrowserDesktop/-PPC samples programs can be used to inspect the records on devices in range, and see below for more information on using SDP records. Finally, the InstalledServices property does not list all the services a peer device supports, but instead reports those that the local machine is configured to use — on desktop Windows, those that are ticked on the Services page of the Bluetooth Device property sheets.

Local Radio information

Local Bluetooth Radios are represented by the BluetoothRadio class, and an instance represening the primary radio can be accessed via the BluetoothRadio.PrimaryRadio static (Shared in Visual Basic) property. The class provides various information about the radio: the Bluetooth Address, the Class of Devices bits and the manufacturer, etc. The radio mode can be configured be setting the Mode property: it can be enabled, disabled, and put in discoverable mode. See the example below.

Public Shared Sub DisplayBluetoothRadio()
 Dim myRadio As BluetoothRadio = BluetoothRadio.PrimaryRadio
 If myRadio Is Nothing Then
 Console.WriteLine("No radio hardware or unsupported software stack")
 Return
 End If
 Dim mode As RadioMode = myRadio.Mode
 Console.WriteLine("* Radio, address: " & myRadio.LocalAddress.ToString("C"))
 Console.WriteLine("Mode: " & mode.ToString())
 Console.WriteLine("Name: " & myRadio.Name _
 & ", LmpSubversion: " & myRadio.LmpSubversion)
 Console.WriteLine("ClassOfDevice: " & myRadio.ClassOfDevice.ToString() _
 & ", device: " & myRadio.ClassOfDevice.Device.ToString() _
 & " / service: " & myRadio.ClassOfDevice.Service.ToString())
 '
 ' Enable discoverable mode
 myRadio.Mode = RadioMode.Discoverable
 Console.WriteLine("Radio Mode now: " & myRadio.Mode.ToString())
 End Sub

There is also a static property BluetoothRadio.AllRadios to fetch all the local radios. However the Microsoft-provided Bluetooth stack software only supports one radio.

Bluetooth SDP — Service Discovery Protocol

The library contains support for creating, parsing, and dumping SDP records. This will generally be used in advanced scenarios only.

To retrieve and dump the records containing a given UUID on a particular device one can use code like the following.

Guid uuid = ...
BluetoothDeviceInfo device = ...
ServiceRecord[] records = device.GetServiceRecords(uuid);
foreach(ServiceRecord curRecord in records) {
 ServiceRecordUtilities.Dump(curRecord, Console.Out);
}

Creating a record is relatively simple, however the format of the records is relatively complex. The format of the simplest record to advertise an RFCOMM service contains two attributes: one to identify the service by its UUID, and one to provide the RFCOMM Channel Number that the service is listening on — it contains five elements, so we provide a helper method to create it. So, code the like following is necessary. When BluetoothListener is passed such a record, at Start() it will update the record and set the Channel Number byte element to the active channel number.

ServiceElement pdl = ServiceRecordHelper.CreateRfcommProtocolDescriptorList();
ServiceElement classList = new ServiceElement(ElementType.ElementSequence,
 new ServiceElement(ElementType.Uuid128, serviceClassUuid));
ServiceRecord record = new ServiceRecord(
 new ServiceAttribute(UniversalAttributeId.ServiceClassIdList, classList),
 new ServiceAttribute(UniversalAttributeId.ProtocolDescriptorList, pdl));

Adding elements of type ‘string’ to a record is even more complex, as the strings in the base specification (ServiceName, ProviderName, etc) are defined in a very baroque manner to allow multiple language versions. Thus, code like the following is required.

ServiceElement strName = new ServiceElement(ElementType.TextString, "hello world");
ServiceElement langBaselist = CreateEnglishUtf8PrimaryLanguageServiceElement();
'
ServiceRecord record = new ServiceRecord(
 ...
 new ServiceAttribute(UniversalAttributeId.LanguageBaseAttributeIdList,
 langBaseList);
 new ServiceAttribute(ServiceRecord.CreateLanguageBasedAttributeId(
 UniversalAttributeId.ServiceName,
 LanguageBaseItem.PrimaryLanguageBaseAttributeId),
 strName)
);

... ...

private static ServiceElement CreateEnglishUtf8PrimaryLanguageServiceElement()
{
 ServiceElement englishUtf8PrimaryLanguage
 = LanguageBaseItem.CreateElementSequenceFromList(
 new LanguageBaseItem[] {
 new LanguageBaseItem("en", LanguageBaseItem.Utf8EncodingId,
 LanguageBaseItem.PrimaryLanguageBaseAttributeId)});
 return englishUtf8PrimaryLanguage;
}
See the source to ObexListener (ObexListener.cs) for a real example.
