

Copyright ©2015, Jeff C. Jensen, Edward A. Lee, and Sanjit A. Seshia. All rights
reserved. This textbook and supplemental material are licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License.

First Edition, Version 1.70

Please cite this book as:
J.C. Jensen, E.A. Lee, and S.A. Seshia,

An Introductory Lab in Embedded and Cyber-Physical Systems v.1.70,
http://leeseshia.org/lab, 2014.

Additional key contributors: Eric S. Kim, Trung Tran, and Matthew Weber.

This edition links to additional documentation located online at
http://LeeSeshia.org/lab/releases/1.70/documents.

ARM™ , Cortex™ , and MPCore™ are trademarks owned by ARM Limited. Bluetooth™ is a trademark owned by Bluetooth Special Interest Group, Inc.
Broadcom® is a trademark owned by Broadcom Corporation. Eclipse™ is a trademark owned by The Eclipse Foundation. FlexLM® is a trademark owned
by Flexera Software, LLC. iRobot® , Create™ , and Roomba™ are trademarks owned by iRobot, Inc. Intel® is a trademark owned by Intel Corporation.
MathWorks® and MATLAB® are trademarks owned by The MathWorks, Inc. Microsoft® , Kinect™ , Windows® , Windows Vista® , Visual C++, Visual Studio
and XBox® are trademarks owned by Microsoft, Inc. National Instruments™ , LabVIEW™ and myRIO™ are trademarks owned by National Instruments, Inc.
Nintendo® and Wii Remote™ are trademarks owned by Nintendo, Inc. SolidWorks™ is a registered trademark of Dassault Systemes SolidWorks Corporation.
SparkFun Electronics® is a trademark owned by SparkFun Electronics, Inc. Texas Instruments™ is a trademark owned by Texas Instruments, Inc. Xilinx® ,
Artix™ , MicroBlaze™ , and Zynq™ are trademarks owned by Xilinx, Inc.

All other trademarks, service marks, and trade names referenced in this text are the property of their respective owners.

Unless otherwise noted, this text has no association with any other company, product, or trademark.

http://leeseshia.org/lab
http://LeeSeshia.org/lab/releases/1.70/documents

Contents

Preface vi

1 Equipment 1

1.1 Equipment: WiiMote . 2

1.2 Equipment: myRIO . 5

1.3 Equipment: MicroBlaze . 9

1.4 Equipment: iRobot Create . 16

1.5 Equipment: iClebo Kobuki . 20

1.6 Equipment: The myRIO Accelerometer . 22

1.7 Equipment: Microsoft Visual Studio . 25

1.8 Equipment: Eclipse . 26

1.9 Equipment: LabVIEW . 27

1.10 Equipment: CyberSim . 30

2 Sensor Interfacing and Calibration 41

2.1 Interface to and Calibrate the WiiMote . 42

3 Embedded Development Tools 53

iii

CONTENTS

3.1 Connect to and Configure myRIO . 55

3.2 Program MicroBlaze from Xilinx SDK . 62

3.3 Program the myRIO Processor from Eclipse 76

3.4 Program the myRIO Processor from LabVIEW 90

4 Programming Embedded Systems 97

4.1 Generate Tones in MicroBlaze . 98
4.2 Program an ADC in MicroBlaze . 106

5 The Cal Climber: CPS Design with the iRobot Create 113

5.1 Navigation Design Requirements . 114

5.2 Hill Climb Design Requirements . 115

5.3 Program CyberSim from Visual Studio . 116

5.4 Navigation in C (Simulation) . 122

5.5 Navigation in C (Deployment) . 126

5.6 Hill Climb in C (Simulation) . 132

5.7 Hill Climb in C (Deployment) . 136

5.8 Program CyberSim from LabVIEW . 141

5.9 Navigation in Statecharts (Simulation) . 146

5.10 Navigation in Statecharts (Deployment) . 151

5.11 Hill Climb in Statecharts (Simulation) . 157

5.12 Hill Climb in Statecharts (Deployment) . 161

6 The Cal Klimber: CPS Design with the Kobuki 166

6.1 Navigation Design Requirements . 167

6.2 Hill Climb Design Requirements . 168

6.3 Program CyberSim from Visual Studio . 169

6.4 Navigation in C (Simulation) . 175

6.5 Navigation in C (Deployment) . 179

6.6 Hill Climb in C (Simulation) . 185

iv

CONTENTS

6.7 Hill Climb in C (Deployment) . 189

6.8 Program CyberSim from LabVIEW . 194

6.9 Navigation in Statecharts (Simulation) . 199

6.10 Navigation in Statecharts (Deployment) . 204

6.11 Hill Climb in Statecharts (Simulation) . 210

6.12 Hill Climb in Statecharts (Deployment) . 214

7 Projects 219

7.1 Project Management . 220

A Lab Setup 227

A.1 Install LabVIEW . 228
A.2 Install Visual Studio Express . 230

A.3 Install C & C++ Development Tools . 231

A.4 Install Xilinx SDK . 232
A.5 myRIO JTAG Wiring . 233

A.6 myRIO iRobot Create Wiring . 234

A.7 Kobuki Wiring . 236

Bibliography 237

Index 242

v

Preface

What this Book is About

The theme of this book is the exploration of embedded and cyber-physical systems not
by resource constraints, but instead by their interactions with the physical world. While
resource constraints are an important aspect of design, such constraints are part of every
engineering discipline and give little insight into the interplay between computation and
physical dynamics. We emphasize the basics of models, analysis tools, and design of
embedded and cyber-physical systems. We guide modeling of the physical world with
continuous-time differential equations and modeling of computations using logic and
discrete models such as state machines. These modeling techniques are evaluated through
the use of meta-modeling, illuminating the interplay of practical design with formal models
of systems that incorporate both physical dynamics and computation. We introduce formal
techniques to specify and verify desired behavior. A combination of structured labs and
design projects solidifies these concepts when applied to the design of embedded and
cyber-physical systems with real-time and concurrent behaviors.

Laboratory exercises expose the lowest levels of abstraction for programming embedded
systems such as traditional imperative programming models through to the highest levels
of abstraction such as graphical system design and concurrent models of computation. At
the highest level, we use LabVIEW to introduce students to model-based design. One level

vi

PREFACE

down from that, we use the C programming language and an RTOS. One level down from
that, we use bare-metal C on a microprocessor – software that executes in the absence of
an operating system.

Intended Audience

Most undergraduate students in the fields of computer science, electrical engineering, and
computer engineering will take at least one course in embedded systems. We intend for
this text to be a valuable addition to their junior or senior year. The topic of cyber-physical
systems extends to undergraduate and graduate students in mechanical engineering who
study robotics, mechatronics, or microprocessor-based systems. Many of the laboratory
experiments and projects are open-ended by nature and lend to greater exploration of
design methodology, an appropriate topic for graduate students in any field relating to
embedded or cyber-physical systems.

This text draws from topics in physics, circuits, transducers, computer architecture, digital
signal processing, digital communications, networking, operating systems, robotics, control
theory, algorithms, probability, and logic – an indefensible list of prerequisites for any
course, and a list that illustrates the interdisciplinary nature of embedded and cyber-
physical systems. Each of these topics yields its own vast field of study far beyond the
scope of this text. We instead touch on key fundamental concepts and exposure to design
at multiple levels of abstraction. We suggest students first take an introductory course in
signals and systems, an introductory course in computer architecture (which covers both C
and assembly programming), several courses of elementary continuous calculus, and an
introductory course in discrete mathematics. While these prerequisites establish a common
language for the technical aspects of embedded and cyber-physical systems, the ubiquitous
and interdisciplinary nature of these systems compels students to investigate topics beyond
computer science.

The laboratory exercises in this book were designed and piloted for the course EECS
149, “Introduction to Embedded Systems” at the University of California, Berkeley (Lee
and Seshia, 2010; Jensen et al., 2011; Lee et al., 2013; Jensen et al., 2012). The course
is targeted at undergraduate juniors and seniors in Electrical Engineering and Computer
Science. Students whom we have taught from this material are generally interested and
engaged, celebrating their projects as well as those from other teams. They are often
proud of what they accomplish, and even post project presentation videos to the internet.
Such anecdotes give some insight into the impact of a course, but how do we know

vii

PREFACE

for sure whether a particular change in the course or laboratory design is actually an
improvement? We are pleased, at least, to witness that students surprise both themselves
and their instructors, that projects demonstrate an understanding of the theoretical concepts
introduced in lecture, and that students have received job offers from industry mentors.

How to Use this Book

Laboratory exercises in this text are designed to be modular so that they may be chosen
according to the topics that best suit a course. Dependencies between labs are explicitly
stated, and generally indicate two or more labs fit into a sequence. The National Instruments
myRIO embedded controller is used for most laboratory exercises and is introduced in
Chapter 1: Equipment. Other software and hardware tools are discussed in the equipment
section of each chapter. Initial setup of laboratory workstations and equipment is covered
in Appendix A: Lab Setup.

Each laboratory consists of a pre-laboratory assignment and in-laboratory exercises. The
pre-laboratory exercises are critical preparation in advance of in-laboratory exercises, as
they introduce documentation, tools, and concepts used. We suggest formal laboratory
sessions begin with a brief lecture that covers the instruments used, their theory of operation,
and the overall goal of the laboratory. Teams of two or three may then begin working on
assigned laboratory exercises; in many cases, solutions are not unique, and we encourage
teams to experiment and innovate.

The electronic version of this book includes a number of hyperlinks to documents that are
needed or helpful for completing the labs. These documents are provided as downloads
at http://LeeSeshia.org/lab. They are also cited in the references section at the end of the
book, where URLs to the original document are provided.

The theoretical foundation for this text follows Introduction to Embedded Systems L (Lee
and Seshia, 2015).

Acknowledgements

Many people have contributed to the design and vetting of the exercises in this book.
Trung N. Tran of National Instruments authored a significant portion of the software
framework for myRIO, including custom VHDL, MicroBlaze architecture, C code, and

viii

http://LeeSeshia.org/lab
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf

PREFACE

LabVIEW code. Trung has mentored a number of student design groups and has provided
invaluable instructional support for laboratories. Rajesh Gupta and Seemanta Dutta at
the University of California San Diego were instrumental in testing and refining labs.
Godpheray Pan from National Instruments customized a physics simulator and renderer
for a complete model-based design workflow using the iRobot Create. Andy Chang,
also from National Instruments, made significant contributions towards the first massive
online open course (MOOC) offering of this curriculum. Additional key contributions
were made by the Engineering Support Group in the Electrical Engineering and Computer
Science Department at the University of California Berkeley, especially Ferenc Kovac and
Winthrop Williams, and the Instructional Support Group in the same department, especially
Linda Huang and Kevin Mullally. We also thank the graduate student instructors who
supervised offerings of the course and helped to develop and debug these lab exercises,
particularly Hugo Andrade, Dai Bui, Alexander Donze, Shanna-Shaye Forbes, Garvit
Juniwal, Eric Kim, Hokeun Kim, Ben Lickly, Wenchao Li, Isaac Liu, Zach Wasson, Matt
Weber, Kevin Weekly, and Michael Zimmer. In particular, Eric, Matt, and Trung have
contributed significantly to the new material on the Kobuki platform and associated updates
to the lab content. Cover design by D. Fred Duran.

ix

PREFACE

Laboratory Exercise Dependency Graph

Design of
Cyber‐Physical
Systems

Programming
Embedded
Systems

Projects

Sensor
Interfacing
& Calibration

SimulationSimulation

SimulationSimulation

DeploymentDeployment

2.1 Interface to and
Calibrate WiiMote

3.2 Program
MicroBlaze from Xilinx

SDK

4.1 Generate Tones in
MicroBlaze

4.2 Program an ADC in
MicroBlaze

5.1,6.1 Program
CyberSim from Visual

Studio

5.2, 6.2 Navigation
in C

(Simulation)

5.4, 6.4 Hill Climb
in C

(Simulation)

3.1 Connect to and
Configure myRIO

3.3 Program the
myRIO Processor from

Eclipse

5.3, 6.3 Navigation
in C (Deployment)

5.5, 6.5 Hill Climb
in C (Deployment)

3.4 Program the
myRIO Processor
from LabVIEW

5.8, 6.8 Navigation
in Statecharts
(Deployment)

5.10, 6.10 Hill Climb
in Statecharts
(Deployment)

5.6, 6.6 Program
CyberSim from

LabVIEW

5.7, 6.7 Navigation
in Statecharts
(Simulation)

5.9, 6.9 Hill Climb in
Statecharts
(Simulation)

6.1 Project
Management

Figure 1: Laboratory exercise dependency graph.

x

1
Equipment

This chapter contains information about equipment used throughout laboratory exercises.
Laboratory exercises begin in the next chapter.

General-purpose software, such as software that runs on a desktop computer, is typically
developed on the same system in which it will execute. This enables fairly straightforward
debugging as debugging tools, source code, and the executable all reside in the same
system. Embedded software, however, is typically developed on a desktop computer,
sent to cross-compile (to compile for a non-native architecture), and downloaded to an
embedded system before it executes.

For design productivity, developers utilize an integrated development environment
(IDE), a graphical user interface that organizes projects, hardware targets, development
tools, and debuggers. An IDE may be provided by a hardware vendor, or development
tools may be tied to an open-source IDE.

1

CHAPTER 1. EQUIPMENT

1.1 Equipment: WiiMote

1.1.1 Introduction to WiiMote

The Nintendo Wii Remote (Fig. 1.1), known informally as a WiiMote, is a handheld
wireless game controller with motion sensing capability. It is an embedded system com-
posed of sensors, actuators, a wireless radio, and a microcontroller. Its sensors consist of a
three-axis analog accelerometer, an infrared camera, and momentary buttons; its actuators
consist of a speaker, a DC motor (for “rumble” functionality), and LEDs. The WiiMote is
a simple, popular, and widely available embedded system, and its wireless interface allows
it to interact with a desktop computer.

The Bluetooth Human Interface Device (HID) profile defines a communication protocol
used by the WiiMote. Each command begins with a 1-byte Transaction Header, the first
nibble of which corresponds to the Transaction Type, and the second to a Parameter. The
header is followed by a device-specific Report ID, and sometimes a payload. Documen-
tation for WiiMote Report IDs has not been published, but some Report IDs have been
identified and documented in WiiMote4 (WiiBrew, 2012).

Bluetooth pairing becomes difficult when multiple devices are present, as may be the case
in a laboratory. This issue is resolved by pairing according to the hardware address of
the specific device to be paired. As with all networked devices, the WiiMote Bluetooth
interface is identified by a unique media access control (MAC) address. A MAC address
is a sequence of 6 bytes, usually written something like “00:1E:35:3B:7E:6D” using
hexadecimal notation. Unfortunately, the MAC address is not visible on the WiiMote itself;
it can be found by manually pairing the WiiMote using the standard Windows Bluetooth
device paring. Once paired, the device properties will show the MAC address. The MAC
address can then be printed on the side of the device for future reference.

1.1. EQUIPMENT: WIIMOTE 2

http://wiibrew.org/wiki/Wiimote

CHAPTER 1. EQUIPMENT

1.1.2 WiiMote Useful References

Wii Remote4 (Wikipedia, 2013d)

WiiMote4 (WiiBrew, 2012)

Nintendo Controllers4 (Nintendo, 2013)

Bluetooth HID Profile L (Bluetooth Special Interest Group, 2003)

Figure 1.1: Nintendo Wii Remote (Orlando, 2010).

Figure 1.2: Nintendo Wii Remote exposed (Stoops, 2008).

1.1. EQUIPMENT: WIIMOTE 3

http://en.wikipedia.org/wiki/Wii_Remote
http://wiibrew.org/wiki/Wiimote
http://nintendo.com/wii/console/controllers
http://LeeSeshia.org/lab/releases/1.70/documents/BluetoothSpecialInterestGroup_03_BluetoothHIDProfile.pdf

CHAPTER 1. EQUIPMENT

Figure 1.3: Nintendo Wii Remote accelerometer axes (Stoops, 2008).

1.1. EQUIPMENT: WIIMOTE 4

CHAPTER 1. EQUIPMENT

1.2 Equipment: myRIO

1.2.1 Introduction to myRIO

The National Instruments myRIO (Fig. 1.4) is an embedded microcontroller with the Xil-
inx Zynq Z-7010 reconfigurable multiprocessor architecture (Fig. 1.5). Its two processors
have their own memory and peripherals and may be programmed independently.

The fixed processor is an ARM Cortex-A9 MPCore, a dual-core processor that implements
the ARMv7 instruction set architecture (ISA) and includes a fixed set of peripherals.
The ARM Cortex-A9 on myRIO is preconfigured at the factory with a distribution of
Linux with real-time extensions. Linux with real-time extensions is a popular real-time
operating system (RTOS), an operating system with more deterministic scheduling and
behavior, and used in a wide range of embedded applications. C & C++ Development
Tools for NI Linux Real-Time, Eclipse Edition is used to compile, download, execute, and
debug C applications on myRIO and LabVIEW is used to compile, download, execute and
debug Structured Dataflow applications on myRIO.

The reconfigurable processor on myRIO is the Xilinx Artix-7 field-programmable gate
array (FPGA). An FPGA is comprised of logic units, memory, and other fundamental
building blocks that may be reconfigured at the hardware level. An FPGA can implement
hardware peripherals such as communication buses, PWM generators, quadrature encoder
interfaces, signal processing algorithms, video rendering and decoding, and even other
processor architectures.

An FPGA fixed-personality is a configuration of an FPGA that is meant to be distributed
without modification. A fixed-personality is a compiled binary file known as a bitfile that
can be distributed without source code. A multiplicity of fixed personalities can be used to
rapidly reconfigure an FPGA, allowing a single hardware device to serve a broad range of
applications. The FPGA fixed-personality that ships with myRIO implements a number
of peripherals, such as UART, I2C, PWM, and others, over standard digital inputs and
outputs. The FPGA fixed-personality is programmed in LabVIEW FPGA and released as
open-source. LabVIEW FPGA can generate C code which can be imported into Eclipse to
interface with the FPGA.

National Instruments myRIO Getting Started Wizard is a tool to connect to myRIO for
the first time. It verifies connection to the hardware, displays data from onboard sensors,
and links to examples and tutorials.

1.2. EQUIPMENT: MYRIO 5

CHAPTER 1. EQUIPMENT

National Instruments Measurement and Automation Explorer (MAX) scans to discover
National Instruments hardware including myRIO. MAX has built-in testing and con-
figuration functions and is the best tool to configure the software on myRIO. MAX is
launched from the Windows desktop or from the Windows Start menu under “National
Instruments→NI MAX”.

National Instruments Web-Based Configuration and Monitoring is a web-based con-
figuration that runs on embedded targets including myRIO. Use a standard browser
and navigate to the IP address of your target to launch NI Web-Based Configuration
and Monitoring. The configuration is similar to that available through MAX.

1.2. EQUIPMENT: MYRIO 6

CHAPTER 1. EQUIPMENT

1.2.2 myRIO Useful References

myRIO 1950 User Guide and Specifications L (National Instruments, 2013g)

myRIO Shipping Personality Reference L (National Instruments, 2013l)

myRIO Product Page4 (National Instruments, 2013k)

myRIO Getting Started4 (National Instruments, 2013i)

myRIO Community4 (National Instruments, 2013h)

Figure 1.4: National Instruments myRIO 1950 embedded controller.

1.2. EQUIPMENT: MYRIO 7

http://LeeSeshia.org/lab/releases/1.70/documents/NationalInstruments_13_myRioUserGuide1950.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/NationalInstruments_13_myRioShippingPersonalityReference.pdf
http://ni.com/myrio
http://ni.com/myrio/setup/getting-started/
http://decibel.ni.com/content/community/academic/products_and_projects/myrio

CHAPTER 1. EQUIPMENT

Figure 1.5: Xilinx Zynq Architecture.

1.2. EQUIPMENT: MYRIO 8

CHAPTER 1. EQUIPMENT

1.3 Equipment: MicroBlaze

1.3.1 Introduction to MicroBlaze

FPGAs can be configured to implement an ISA and other microcontroller components
that can be easily modified with new peripherals and functionality. A microprocessor
implemented in an FPGA is known as a soft-core processor. Soft-core processors
are usually slower than a custom silicon processor with equivalent functionality, but
they are nonetheless attractive because they are fully customizable. Often, multiple
soft-core processors may be fit onto a single FPGA to create a multicore processor.

Xilinx MicroBlaze is a 32-bit soft-core processor with a proprietary ISA. MicroBlaze
can be programmed on an FPGA using Xilinx design tools or by deploying an
FPGA fixed-personality that contains a MicroBlaze core. The MicroBlaze core in the
fixed-personality used for these labs runs at a clock rate of 50MHz and has 128kB of
memory. There is no floating-point processor or cache. You may use the user button
on myRIO to reset the MicroBlaze processor.

Developers need a way to debug embedded applications in a similar fashion to
desktop debugging but with greater insight into the processor architecture, memory,
subsystems, and peripherals. A predominant solution is a standard for specialized
hardware interfaces and a communication protocol. The Joint Test Action Group
(JTAG) debugging standard is often implemented by special hardware on an embedded
controller and interfaced to a desktop computer using a JTAG interface device. JTAG
defines communication at the physical layer, and vendors often define additional
protocols for downloading, programming, and debugging.

The Xilinx Software Development Kit (Xilinx SDK) is an Eclipse IDE for developing
embedded applications. Together with a JTAG interface device, Xilinx SDK is used to
program and debug software running on a MicroBlaze soft-core processor.

1.3. EQUIPMENT: MICROBLAZE 9

CHAPTER 1. EQUIPMENT

1.3.2 Microblaze and SDK Useful References

MicroBlaze Processor Reference Guide L (Xilinx, 2012c)

MicroBlaze Soft Processor Core4 (Xilinx, 2013c)

LogiCORE IP AXI INTC L (Xilinx, 2013b)

LogiCORE IP AXI Timer L (Xilinx, 2012b)

Embedded System Tools Reference Manual L (Xilinx, 2012a)

EDK support4 (Xilinx, 2013a)

Joint Test Action Group4 (Wikipedia, 2013a)

myRIO JTAG Instructions L (National Instruments, 2013j)

14 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v11.4)

Chapter 1: MicroBlaze Architecture

Overview
The MicroBlaze™ embedded processor soft core is a reduced instruction set computer (RISC)
optimized for implementation in Xilinx® Field Programmable Gate Arrays (FPGAs). Figure 1-1
shows a functional block diagram of the MicroBlaze core.

Features
The MicroBlaze soft core processor is highly configurable, allowing you to select a specific set of
features required by your design.

The fixed feature set of the processor includes:

• Thirty-two 32-bit general purpose registers
• 32-bit instruction word with three operands and two addressing modes
• 32-bit address bus
• Single issue pipeline

In addition to these fixed features, the MicroBlaze processor is parameterized to allow selective
enabling of additional functionality. Older (deprecated) versions of MicroBlaze support a subset of
the optional features described in this manual. Only the latest (preferred) version of MicroBlaze
(v8.00) supports all options.

Xilinx recommends that all new designs use the latest preferred version of the MicroBlaze
processor.

Table 1-1, page 15 provides an overview of the configurable features by MicroBlaze versions.

Figure 1-1: MicroBlaze Core Block Diagram

DXCL_M

DXCL_S

Data-sideInstruction-side

IPLB

ILMB

bus interface bus interface

Instruction
Buffer

Program
Counter

Register File
32 X 32b

ALU

Instruction
Decode

Bus
IF

Bus
IF

IXCL_M

IXCL_S

I-C
ache

D
-C

ache

Shift

Barrel Shift

Multiplier

Divider

FPU

Special
Purpose
Registers

Optional MicroBlaze feature

M_AXI_IP

UTLBITLB DTLB

Memory Management Unit (MMU)

DPLB

DLMB

M_AXI_DP

MFSL 0..15
DWFSL 0..15
SFSL 0..15
DRFSL 0..15

or

or

M_AXI_IC M_AXI_DC

Branch
Target
Cache

M0_AXIS..

S0_AXIS..
M15_AXIS

S15_AXIS

Figure 1.6: Diagram of the Xilinx MicroBlaze processor (Xilinx, 2012c).

1.3. EQUIPMENT: MICROBLAZE 10

http://LeeSeshia.org/lab/releases/1.70/documents/Xilinx_12_MicroBlazeRefGuide14.4.pdf
http://xilinx.com/tools/microblaze.htm
http://LeeSeshia.org/lab/releases/1.70/documents/Xilinx_13_LogiCoreIpAxiIntc.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Xilinx_13_LogiCoreIpAxiTimer.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Xilinx_12_EmbeddedSystemToolsReferenceManual.pdf
http://xilinx.com/support/index.html/content/xilinx/en/supportNav/design_tools/embedded_development_kit__edk.html
http://en.wikipedia.org/wiki/Jtag
http://LeeSeshia.org/lab/releases/1.70/documents/NationalInstruments_13_myRioJtagInstructions.pdf

CHAPTER 1. EQUIPMENT

1.3.3 Interrupts on MicroBlaze

Interrupts can be used to periodically sample sensors such as microphones for voice
control or ultrasonic range finders for navigation. They can be used to drive actuators
by generating a pulse-width modulation (PWM) signal for sound or motor control, or
to simply flash an LED to signal a device fault. Software written for an embedded
system may even reside almost entirely in timed interrupts.

An interrupt service routine (ISR) should contain a minimum number of instructions.
An ISR that is invoked periodically and has an execution time nearly as long as its
period will starve other processes; worse, an ISR whose execution time is equal to
or greater than its period may cause unpredictable or unstable behavior. Interrupts
step outside the paradigm of sequential code, and care must be taken to ensure no
two processes attempt to simultaneously access shared resources. It is important to
document any shared resources used by an ISR, including whether or not the ISR will
read or write to a resource.

It is difficult to debug interrupts since their behavior may be intimately tied to the
timing of the system and the occurrence of external events. A common mistake is to
use a costly debugging technique like printing to a console or communication port in
the body of an ISR; such operations are processor-intensive and access shared hardware
resources, with the potential of contributing significant timing and logical artifacts.
Any debugging instructions in an ISR will affect timing, but there are reasonably safe
debugging mechanisms that have minimal impact such as toggling a digital output line
or incrementing a counter, each of which may be executed in a single processor cycle.

1.3.4 MicroBlaze and AXI Bus Architecture

When programming at the register level to configure interrupts or digital input and
output (DIO), pay close attention to memory locations and bit numbering. MicroBlaze
can be configured for either big-endian or little-endian memory addressing; big-endian is
used in this text and with the distributed MicroBlaze fixed-personality. The Advanced
eXtensible Interface (AXI) bus that connects MicroBlaze to hardware peripherals uses
standard bit ordering for its register architecture, shown in Fig. 1.71.

1The MicroBlaze architecture uses bit-reversed ordering where bit 0 is the most significant bit and bit 31
is the least significant bit. The lab exercises here do not require you to program any MicroBlaze register, but
only the standard bit ordered AXI bus registers.

1.3. EQUIPMENT: MICROBLAZE 11

CHAPTER 1. EQUIPMENT

32-bit register

LSB

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 3030 299 288 27 266 255 24 233 22 21 200 199 188 17 166 155 14 133 12 11 100 99 88 7 66 55 4 33 2 1

MSB

Figure 1.7: Bit numbering for an AXI bus register. The LSB is isolated by the mask 0x0000

0001, and the MSB is isolated by the mask 0x8000 0000.

A common practice in documenting and interfacing with memory-mapped registers
is to name a register in documentation and provide reference source code that maps
this name to a memory location. For example, documentation labels a register as
DIOB_70OUT, a concise (and rather cryptic) name for a memory-mapped register
whose value drives digital outputs on physical pins 0 through 7; example C code
provided by the hardware vendor defines this name as follows:

#define DIOB_70OUT *((volatile int *)(XPAR_PORTDO_BASEADDR))

Figure 1.8: Example mapping of a documented memory-mapped register to a C macro of the
same name. C statements may reference this macro as if it were a symbol, reading or assigning
its value as if it were a variable (though unlike a C variable, this mechanism introduces subtle
implications and dynamics). XPAR_PORTDO_BASEADDR refers to the memory location of the
digital I/O port memory-mapped register; subsequent pins are offset from this address.

A word of caution about a read-after-write hazard (RAW hazard): depending on the
hardware architecture you are using, some memory-mapped registers take a few cycles
to update with new values. If a register is written and then immediately read, it’s
value may not have settled, causing unexpected results. It is good practice to insert
asm("nop") instructions (“no operation” in assembly) between writes and reads of the
same register. For the MicroBlaze implementation used in this lab, there should be at
least four cycles between sequential writes and reads of the same register.

1.3. EQUIPMENT: MICROBLAZE 12

CHAPTER 1. EQUIPMENT

AXI b
u

s MicroBlaze

Core

TIMER

ADC subsystem

MicroBlaze Debug

Module (MDM)

BRAMs

Interrupt controller

1
 In

te
rru

p
t lin

e

Figure 1.9: Conceptual block diagram of MicroBlaze and AXI bus architecture. Not shown:
hardware peripherals such as GPIO, UART, and others.

1.3. EQUIPMENT: MICROBLAZE 13

CHAPTER 1. EQUIPMENT

1.3.5 Memory-Mapped Register Interface to Digital IO

DIO70_IN

DIO 7-0

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 3030 299 288 27 266 255 24 233 22 21 200 199 188 17 166 155 14 133 12 11 100 99 8831

Bit Field Access Values
7 – 0 Digital Input Read myRIO DIO 7-0 input state

Figure 1.10: DIO70_IN (DIO 7-0 In) register. myRIO MXP Connector B pins 0-7. Bit 0
reads MXP Connector B DIO0, and bit 7 reads DIO7.

DIO158_OUT

DIO 15-8

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 3030 299 288 27 266 255 24 233 22 21 200 199 188 17 166 155 14 133 12 11 100 99 8831

Bit Field Access Values
7 – 0 Digital Output Write myRIO DIO 15-8 output state

Figure 1.11: DIO158_OUT (DIO 15-8 Out) register. myRIO MXP Connector B pins 8-15. Bit
0 writes MXP Connector B DIO8, and bit 7 writes DIO15.

1.3. EQUIPMENT: MICROBLAZE 14

CHAPTER 1. EQUIPMENT

1.3.6 Memory-Mapped Register Interface to the Accelerometer ADC

Start Conversion

ADC_CTRL

Channel Index

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 303 29 28 27 26 25 24 23 22 21 2031 303 9 8 6 5 3 2031 15 14 13 12 11 10 9 8 7 6 5 4 3 2 15 3 0 9 8 6 5 3

Bit Field Access Values
19 – 16 Channel Index Write Channel 0 – 15

0 Start Conversion Write 0: Reset
1: Start conversion

Figure 1.12: ADC_CTRL (ADC Control) register. The ADC begins a conversion on a rising-
edge (0 to 1) transition of the Start Conversion bit.

Busy

ADC_STATUS

Channel Index Conversion Value ChConversion Value

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 2831 30 9 283 11 10 9 8 7 6 5 4 3 2 10 9 8 6 5 3

Bit Field Access Values
27 – 16 Conversion Result Read 0 – 4095
15 – 12 Channel Index Read 0 – 15

0 ADC Busy Read 0: Inactive
1: Conversion in progress

Figure 1.13: ADC_STATUS (ADC Status) register.

Acknowledge

ADC_IAR
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 131 30 9 8 6 5 3 0 9 8 6 5 3 0 9 8 6 5 33

Bit Field Access Values
0 ADC Interrupt Acknowledge Write 0: ADC interrupt unacknowledged.

1: Acknowledge ADC interrupt

Figure 1.14: ADC_IAR (ADC Interrupt Acknowledge) register.

1.3. EQUIPMENT: MICROBLAZE 15

CHAPTER 1. EQUIPMENT

1.4 Equipment: iRobot Create

1.4.1 Introduction to iRobot Create

The iRobot Create is an off-the-shelf platform capable of driving, sensing bumps
and cliffs, executing simple scripts, and communicating with an external embedded
controller. The iRobot Create is a complete robot development kit that can be
controlled without consideration of mechanical assembly or machine code. An internal
microcontroller samples its sensors, drives its actuators, and communicates with external
devices over a proprietary serial interface called the iRobot Create Open Interface
(OI) standard (iRobot, 2006a). The iRobot Create Open Interface defines the electronic
and software interface for controlling the robot.

The iRobot can be finicky about its state while charging; there are some modes in
which the robot will be connected to a charging source but will not actually charge.
When correctly charging, the iRobot Power LED should be red, slowly fading on and
off. Solid red or flashing red indicate a charging error. Solid green is, unfortunately
ambiguous: it may indicate charging is complete, or it may indicate the robot is
powered on and running. You may disambiguate this by removing the charging source:
if the robot was powered and running, the power LED will remain solid green. If the
robot is fully charged, the power LED will turn off. If you have difficulty charging
your robot, first unplug any charging sources, power off the robot, and power off any
external devices such as the wireless router. Then connect the charging source. Charge
often and be sure to verify your robot is in charging mode when you leave the lab.

The sensors in the iRobot are at times rather inaccurate, especially the motor encoders
and infrared distance sensors. Distance and angle are reported by the iRobot Create as
an integer number of millimeters and degrees, respectively, and fractional remainders
are truncated and lost when transmitted to an external controller. One way to mitigate
wheel encoder truncation error is to increase the sensor polling period: for a fixed
wheel speed, increasing the polling period allows the encoders more time to accumulate,
making them numerically larger in comparison to truncation error. Another way to
mitigate wheel encoder truncation error is to increase wheel speed: for a fixed sensor
polling rate, increasing wheel speed causes the encoders to accumulate at a higher
rate, again making them numerically larger in comparison to truncation error. Both
techniques have adverse side-effects and are counter-intuitive with regard to safe and
reliable operation – you may need to perform some experiments to find the polling
period and wheel speeds that work best for your application. The infrared distance

1.4. EQUIPMENT: IROBOT CREATE 16

CHAPTER 1. EQUIPMENT

sensors used for cliff detection operate more like light level sensors and are sensitive
to ambient light and ground color and material. The iRobot Create reports the digital
value read from this sensor, and uses a threshold to report a boolean value for whether
or not this should be interpreted as a cliff. In some cases, you may need to use the
digital value and determine your own threshold for cliff detection.

1.4. EQUIPMENT: IROBOT CREATE 17

CHAPTER 1. EQUIPMENT

1.4.2 iRobot Create Useful References

Create Owner’s Guide L (iRobot, 2006b)

Create Open Interface Specification L (iRobot, 2006a)

iRobot Create Product Page4 (iRobot, 2013)

Figure 1.15: iRobot Create with an external microcontroller.

1.4. EQUIPMENT: IROBOT CREATE 18

http://LeeSeshia.org/lab/releases/1.70/documents/iRobot_06_CreateOwnersGuide.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/iRobot_06_CreateOpenInterfaceSpecification.pdf
http://irobot.com/create

CHAPTER 1. EQUIPMENT

1.4.3 iRobot Create Equipment Exercises

For exercises asking for a sequence of bytes, use hexidecimal (0x__) notation for
numbers.

1. How many sensors are on the bottom of the iRobot Create? Does the placement of
the sensors result in equal sensing capability when the robot is driving forward and
backward?

2. What sequence of bytes should be sent to the iRobot Create UART port to command
the robot to drive straight at a velocity of 300 mm/s?

3. What sequence of bytes should be sent to the iRobot Create UART port to request
a single sensor packet containing all sensors?

4. What sequence of bytes should be sent to the iRobot Create to enable a continuous
stream of a single packet containing all sensors?

5. After the iRobot Create has received the sequence of bytes found in Exercise
4, what sequence of bytes will the robot transmit periodically? You may represent
a sensor packet as [Packet Name (N)] where N is the length of the packet, and
checksum as [Checksum].

1.4. EQUIPMENT: IROBOT CREATE 19

CHAPTER 1. EQUIPMENT

1.5 Equipment: iClebo Kobuki

1.5.1 Introduction to Kobuki

Like the iRobot Create, the Kobuki is a differential drive robot capable of sensing
its environment, executing scripts, and communicating with an external embedded
controller via a serial port.

There are subtle hardware differences between the Kobuki and the iRobot Create. First,
there are only three cliff sensors on the Kobuki instead of the iRobot’s four. Second,
the Kobuki measures and outputs a total distance each of its two wheels have traveled
based on motor encoders.

The Kobuki also uses a different protocol to communicate with its controller. Notable
differences in the protocol include a field in the packet header that contains the packet
length and a move command that accepts the fastest moving wheel speed and turn
radius as arguments instead of raw wheel speeds. The Kobuki continually sends
feedback packets every 50 Hz containing basic sensor data over its serial extension
port, as long as it is powered on. If the Kobuki stops receiving packets for a period
on the order of 0.5 seconds it will shut down. The documentation for the Kobuki
communication protocol can be found at (YujinRobot, 2014a).

1.5.2 Kobuki Useful References

Kobuki Documentation4 (YujinRobot, 2014b)

Kobuki C++ Driver Specification4 (YujinRobot, 2014a)

1.5.3 Kobuki Equipment Exercises

For exercises asking for a sequence of bytes, use hexidecimal (0x__) notation for
numbers.

1. How many sensors are on the bottom of the Kobuki? In what respects does the
Kobuki have sensing advantages or disadvantages compared to the iRobot?

1.5. EQUIPMENT: ICLEBO KOBUKI 20

http://kobuki.yujinrobot.com/home-en/documentation/
https://yujinrobot.github.io/kobuki/doxygen/enMainPage.html

CHAPTER 1. EQUIPMENT

Figure 1.16: Kobuki robot with labeled sensors (YujinRobot, 2014c)

2. What sequence of bytes should be sent to the Kobuki’s serial port to make it drive
straight at 300 mm/s?

3. What sequence of bytes should be sent to the Kobuki’s serial port to make it turn
its right wheel at 300 mm/s and its left wheel at 250 mm/s?

4. How would the Kobuki report that the right and center bumpers were pressed
simultaneously with button 2? Give the packet, writing xx for bytes that are don’t
cares.

1.5. EQUIPMENT: ICLEBO KOBUKI 21

CHAPTER 1. EQUIPMENT

1.6 Equipment: The myRIO Accelerometer

1.6.1 Introduction to the myRIO Accelerometer

The myRIO onboard accelerometer is a three axis analog accelerometer used to
measure gravity and coordinate acceleration. It is a microelectromechanical system
(MEMS) composed of very small mechanical and electrical components whose size is
typically measured in microns. The accelerometer used is a Freescale MMA8452Q
3-axis digital accelerometer.

Special considerations come in to play on how an accelerometer interacts when it is
mounted on a moving robot.

Figure 1.17: Inertial Measurement Unit (IMU) containing a three-axis accelerometer de-
veloped by DARPA researchers at the University of Michigan. Source: Defense Advanced
Research Projects Agency (DARPA) (Defense Advanced Research Projects Agency, 2012).

1.6. EQUIPMENT: THE MYRIO ACCELEROMETER 22

CHAPTER 1. EQUIPMENT

1.6.2 myRIO Accelerometer Useful References

Xtrinsic MMA8452Q 3-Axis 12-bit/8-bit Digital Accelerometer L (Freescale Semicon-
ductor, 2013)

Implementing a Tilt-Compensated eCompass using Accelerometer and Magnetometer
Sensors L (Ozyagcilar, 2011)

Using an Accelerometer for Inclination Sensing L (Fisher, 2010)

Figure 1.18: Analog Devices ADXL335 MEMS accelerometer. Credit: SparkFun (SparkFun
Electronics, 2013).

1.6. EQUIPMENT: THE MYRIO ACCELEROMETER 23

http://LeeSeshia.org/lab/releases/1.70/documents/Freescale_13_XtrinsicAccelerometer.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Ozyagcilar_11_ImplementingCompass.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Ozyagcilar_11_ImplementingCompass.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Fisher_10_UsingAnAccelerometerForInclinationSensing.pdf

CHAPTER 1. EQUIPMENT

1.6.3 MyRIO Accelerometer Exercises

1. Consider an accelerometer mounted according to the coordinate system in Fig. A.3.
Let a⃗g = (agx ,agy ,agz) be the specific force of gravity as measured by an accelerometer.
You may assume the accelerometer has been calibrated and is in units of g.

(a) Find a⃗g when the robot is on level ground. Verify ∥a⃗g∥ = 1g.
(b) The robot is placed on a hill with inclination θI ∈ [0, π

2] in radians. Find a⃗g when
the robot is oriented directly uphill. Verify ∥a⃗g∥ = 1g.

(c) The robot is placed on a hill with inclination θI ∈ [0, π

2] in radians. Find a⃗g

when the robot is rotated θ radians clockwise from uphill orientation. Verify
∥a⃗g∥ = 1g.

2. This exercise highlights the joint dynamics between physical processes and embedded
control. For this exercise, consider a robot with an accelerometer mounted as shown
in Fig. A.3.

(a) An object on the surface of the Earth experiences a roughly constant gravitational
force. If the robot is placed at rest in two distinct positions and orientations
in space, will the accelerometer measurements in each position necessarily be
equal?

(b) In what two ways does movement of the robot influence the accelerometer
measurement? Hint: What does an accelerometer actually measure?

(c) One of the two components found in part 2b is undesirable when measuring tilt.
What is the undesired component, and how might it be reduced or eliminated?

1.6. EQUIPMENT: THE MYRIO ACCELEROMETER 24

CHAPTER 1. EQUIPMENT

1.7 Equipment: Microsoft Visual Studio

Microsoft Visual Studio is the primary development platform for Microsoft Windows
software, including desktop, server, tablet and mobile. Visual Studio includes support
for multiple programming languages including C and C++.

1.7.1 Visual Studio Useful References

Visual Studio4 (Microsoft, 2014a)

Visual Studio Get Started4 (Microsoft, 2014b)

1.7. EQUIPMENT: MICROSOFT VISUAL STUDIO 25

http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
http://www.visualstudio.com/get-started/overview-of-get-started-tasks-vs

CHAPTER 1. EQUIPMENT

1.8 Equipment: Eclipse

1.8.1 Introduction to Eclipse

Eclipse from the Eclipse Project is the most widely-used open-source IDE, having
been adapted as the IDE of choice for many hardware vendors. Like most IDEs,
Eclipse provides a workspace to organize project files and development perspectives, a
project to organize source code and dependencies, and build specifications that define
communication with hardware targets.

Like most IDEs, Eclipse provides a workspace to organize project files and development
perspectives. A project organizes source code, dependencies, and build specifications
that define communication with hardware targets.

1.8.2 Eclipse Useful References

Eclipse Juno Documentation4 (Eclipse Foundation, 2013b)

Eclipse4 (Eclipse Foundation, 2013a)

C Support for NI myRIO User Guide L (National Instruments, 2013a)

1.8. EQUIPMENT: ECLIPSE 26

http://help.eclipse.org/juno/
http://eclipse.org
http://LeeSeshia.org/lab/releases/1.70/documents/NationalInstruments_13_myRioCSupportUserGuide.pdf

CHAPTER 1. EQUIPMENT

1.9 Equipment: LabVIEW

1.9.1 Introduction to LabVIEW

Model-based design emphasizes mathematical modeling to design, analyze, verify,
and validate dynamic systems. Mathematical models are used to design, simulate,
synthesize, and test cyber-physical systems, and are based on system specifications
and analysis of the physical context in which the system resides.

Graphical design environments provide developers with a higher level of abstraction
than traditional imperative programming models. National Instruments LabVIEW is a
graphical design environment for scientists and engineers that emphasizes model-based
design of embedded and cyber-physical systems. LabVIEW applications run on desktop
computers or embedded controllers, and are most commonly designed to interface
with sensors, actuators, instruments, data acquisition devices, and other computers and
embedded devices.

LabVIEW supports heterogeneous compositions of several models of computation:
continuous systems are expressed as ordinary differential equations or differential
algebraic equations, and discrete systems are expressed as difference equations, in the
Signal Flow model of computation; concurrent state machines are expressed in the
Statecharts model of computation; imperative expressions are expressed as Formula
Nodes (a subset of ANSI C) or MathScript Nodes (compatible with scripts created by
developers using The Mathworks, Inc. MATLAB software and others); data acquisition
and program flow are expressed in Structured Dataflow (Kodosky et al., 1991), the
predominant language in LabVIEW. Structured Dataflow is often referred to as the
graphical language (G).

A LabVIEW application is called a virtual instrument (VI). A VI consists of a
front panel and a block diagram. The front panel provides an interface for setting
parameters, executing a VI, and viewing results. The block diagram defines the
behavior of the application. A front panel and its corresponding block diagram are
shown in Fig. 1.19-1.20.

LabVIEW applications targeting the processor on myRIO are compiled into machine
code and executed within an RTOS.

1.9. EQUIPMENT: LABVIEW 27

CHAPTER 1. EQUIPMENT

1

Number of Kinects Attached

Move Success?

STOP

1280x960 0.29X 32-bit RGB image 48,36,78 (192,567)

Color Image

640x480 0.56X Signed 16-bit image -8 (0,0)

Depth Image

90-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80

SoundSourceAngle

0.187069

SoundSourceAngleConfidence

19.9962

BeamAngle

USB\VID_045E&

UniqueKinectId

2

Status

0

Index IsRunning

-27

MinElevationAngle

27

MaxElevationAngle

USB\VID_0409&

DeviceConnectionId0

Kinect Properties

0

Kinect Sensor Index

RgbResolution1280x96

Color Image Format

Resolution640x480Fps

Depth Image Format

Author: Jordan Kuehn

Figure 1.19: LabVIEW front panel for the Microsoft XBox Kinect.

Get Audio Data.viGet Color Frame.vi Get Depth Frame.vi

Stop

Color Image Depth Image

SoundSourceAngle

SoundSourceAngleConfidence

BeamAngle
100

Author: Jordan Kuehn

Number of Kinects Attached

Move Success?

27 -27 0

Kinect Properties

Kinect Sensor Index

Color Image Format

Depth Image Format Figure 1.20: LabVIEW block diagram for the Microsoft XBox Kinect.

1.9. EQUIPMENT: LABVIEW 28

CHAPTER 1. EQUIPMENT

1.9.2 LabVIEW Useful References

Learn LabVIEW4 (National Instruments, 2014)

Getting Started with LabVIEW L (National Instruments, 2013b)

LabVIEW Quick Reference Card L (National Instruments, 2010)

LabVIEW 2013 Help4 (National Instruments, 2013c)

LabVIEW 2013 Real-Time Module Help4 (National Instruments, 2013d)

LabVIEW Product Page4 (National Instruments, 2013e)

Figure 1.21: LabVIEW myRIO Start Screen.

1.9. EQUIPMENT: LABVIEW 29

http://www.ni.com/academic/students/learn-labview/
http://LeeSeshia.org/lab/releases/1.70/documents/NationalInstruments_13_GettingStartedWithLabVIEW.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/NationalInstruments_13_LabVIEWQuickReferenceCard.pdf
http://zone.ni.com/reference/en-XX/help/371361K-01/
http://zone.ni.com/reference/en-XX/help/370622L-01/
http://ni.com/labview

CHAPTER 1. EQUIPMENT

1.10 Equipment: CyberSim

1.10.1 Introduction to CyberSim

CyberSim is software used to simulate cyber-physical systems using models of both
cyber (software) and physical systems. CyberSim is built especially for the laboratory
exercises in this book and is the product of a collaboration between the University
of California, Berkeley and National Instruments. CyberSim is written in LabVIEW
using the LabVIEW Robotics Simulator, and its source code is released open source
at http://LeeSeshia.org/lab.

Discrete simulations of continuous systems are approximations and are subject to
numerical error. These simulations are based on ordinary differential equations (or
differential algebraic equations), that are computationally expensive to solve, and
numerical accuracy is balanced against real-time performance. The scope of any
simulator is limited: one simulation tool may focus on kinematics, another on
electricity and magnetism, another on fluid mechanics, another on energy, another on
quantum and nuclear dynamics, and so on. Some tools are dedicated to modeling the
behavior of computers themselves!

There are currently two versions of CyberSim: one that has a physical model of the
iRobot Create, and another that has a physical model of the Kobuki. In this section,
we mainly focus on describing the iRobot Create version of CyberSim, noting that the
user interface of CyberSim and basic physical modeling of both robots in CyberSim
are similar. Physical models are based on the the Open Dynamics Engine (Smith,
2012) rigid body dynamics software that can simulate robots in a virtual environment
and render them in 3D. iRobot Create sensor packets are constructed from the state of
the simulation and passed into a controller that outputs desired wheel speeds. Effects
such as control period, quantization, and noise are built into the simulator and are
meant to closely reflect control software running on an embedded controller interfaced
with the iRobot Create.

LabVIEW Robotics Simulator provides a graphical interface for customizing environ-
ments, including adding, removing, and moving obstacles, changing the initial position
of the robot, adjusting sensor locations, and adding multiple robots to the environment.
Robots modeled in CAD software such as SolidWorks can be imported and customized
with sensors and actuators. The configuration of the environment, including dimensions

1.10. EQUIPMENT: CYBERSIM 30

http://LeeSeshia.org/lab

CHAPTER 1. EQUIPMENT

and placement of objects and robots, is stored in an XML file. The resulting XML
file may be read in by CyberSim and used to simulate a new environment.

1.10. EQUIPMENT: CYBERSIM 31

CHAPTER 1. EQUIPMENT

1.10.2 CyberSim Useful References

LabVIEW Robotics Simulator Wizard4 (National Instruments, 2013f)

Figure 1.22: iRobot Create in CyberSim.

1.10. EQUIPMENT: CYBERSIM 32

http://zone.ni.com/reference/en-XX/help/372983D-01/lvrobodialog/robo_sim_wizard/

CHAPTER 1. EQUIPMENT

1.10.3 CyberSim User Interface

CyberSim is launched as a standalone executable, CyberSim.exe . Upon launching,
the user interface (Fig. 1.22) appears. Before a simulation can run, the simulator needs
to be configured with an environment and a statechart controller. The environment
is an XML file generated by the LabVIEW Robotics Environment Simulator, and
several such environments are included with CyberSim. The statechart controller may
be either a LabVIEW VI or a Windows Dynamic-Link Library (DLL) that receives
sensor inputs and produces actuator outputs. The paths to the environment and the
statechart controller are set under the Configuration tab.

When running a simulation, a 3D rendering of the simulation will appear. If using a
LabVIEW Statechart as the controller, its execution will also be shown alongside the
simulation.

Controlling and Navigating a Simulation

Once a simulation environment and statechart controller have been specified, use the
following buttons to control a simulation:

•
�� ��Start begins a simulation.

•
�� ��Pause pauses the simulator. Simulation time does not advance and the statechart
controller is not executed while paused. Press again to resume the simulation.

•
�� ��Stop stops a simulation and unloads the environment and statechart controller.

•
�� ��Camera resets the simultaion camera to its default vantage.

•
�� ��Exit stops an executing simulation and closes CyberSim.

To navigate around the 3D rendering of the simulation, mouse over the rendering and
the cursor will change, indicating the navigation mode when clicking:

• Click and drag to navigate spherically around the clicked point.
• Ctrl + click and drag to strafe along the visible plane of the simulation.
• Shift + click and drag to zoom in and out.

1.10. EQUIPMENT: CYBERSIM 33

CHAPTER 1. EQUIPMENT

Command-Line Arguments

The default configuration of CyberSim may be overridden using the following command-
line arguments:

Option Parameters Meaning
/enableVisualization true, false enable visual rendering of the simula-

tion and environment and statechart
/environment environment path Path to the environment manifest

XML file. May be absolute or rel-
ative.

/maxTime seconds, Inf Maximum duration over which to sim-
ulate, in seconds. Double-precision
floating point number.

/record record path Path to write the simulation record
XML file. May be absolute or relative.

/statechart statechart path Path to the statechart VI or DLL con-
troller to execute with the simulation.
May be absolute or relative.

Table 1.1: CyberSim.exe command-line arguments.

Sample usage:

CyberSim.exe /environment:HillClimb.xml /statechart:libstatechart.dll /maxTime:10.5

1.10.4 How the Simulation Works

The CyberSim is built atop a combination of technologies. The iRobot Create was
modeled in SolidWorks and then imported into the LabVIEW Robotics Environment
Simulator. The simulator (based on the Open Dynamics Engine) numerically solves
the ordinary differential equations for the kinematics and dynamics of the differential
drive robot in a simulated environment. LabVIEW renders the environment and robot
into a 3D Picture Control for viewing the simulation.

The ODE solver uses a variable step size to advance time, allowing for higher precision
(smaller step size in time) when objects are moving quickly or colliding, and faster

1.10. EQUIPMENT: CYBERSIM 34

CHAPTER 1. EQUIPMENT

performance (larger step size in time) otherwise. The solver uses several random
number generators in predicting collisions, noise generators for introducing sensor
noise, and the engine uses nondeterministic threads – as a result the simulator is
nondeterministic. You may not see the same results across two simulations with the
same initial conditions. While this may be undesirable from a testing standpoint, this
comes with the side effect of being closer to real life, where initial conditions and an
environment are never exactly replicable.

The internal microcontroller on the iRobot Create may be configured to periodically
sample its sensors and transmit a sensor packet via serial port to a connected embedded
controller such as myRIO. Due to design flaws with the iRobot Create, sampling less
frequently produces more accurate results, and CyberSim uses the sampling period of
60ms. CyberSim models this by advancing simulation time by 60ms between each
execution of the control algorithm. At each control period, the simulated world is
sampled to create a sensor packet equivalent to that sent by the real robot. Single-
precision floating point quantities of the simulated world are quantized and converted
into the format used by each sensor.

The inputs to the control algorithm include a simulated iRobot Create sensor packet
and values of the three-axis accelerometer on myRIO. The outputs of the control
algorithm are the desired left and right wheel speeds. The clearly defined interface
between the simulator and the control algorithm allows the same control algorithm to
be used when interfaced with the real robot. The ability to design and tune a control
algorithm in simulation and then deploy and verify on the real robot is an example of
model-based design, shown in Fig. 1.23.

The control algorithm is provided by the user. Two interfaces are supported, a Windows
DLL or a LabVIEW VI. When creating a Windows DLL, the controller must match
the prototype shown in Fig. 1.24. The sensor stream parameter refers to the contents
of a sensor stream packet sent by the iRobot Create containing SensorGroup6, as
defined in the iRobot Create Open Interface. The return value is an error or success
code, where zero indicates no error.

When using a LabVIEW VI, the VI front panel must match the template shown in
Fig. 1.25.

1.10. EQUIPMENT: CYBERSIM 35

CHAPTER 1. EQUIPMENT

Deploy' Simulate'Design'

Simulated''Sensors'

Simulated'Actuators'

Real'Sensors'

Real'Actuators'

Control'Algorithms'

System'Abstrac9on'Layer'

System'Abstrac9on'Layer'

Simulated'Plants'
&'Environments'

Real'Plants'
&'Environments'

Verifica(on+&+Valida(on+
Figure 1.23: An example model-based design workflow.

int32_t __cdecl irobotNavigationStatechartSimulation(

const int32_t netDistance ,

const int32_t netAngle ,

const uint8_t * sensorStream ,

const int32_t sensorStreamSize ,

const double * accelAxes ,

const int32_t accelAxesSize ,

int16_t * pRightWheelSpeed ,

int16_t * pLeftWheelSpeed);

Figure 1.24: C function signature for a control algorithm used by CyberSim.

Figure 1.25: VI template for a control algorithm used in CyberSim.

1.10. EQUIPMENT: CYBERSIM 36

CHAPTER 1. EQUIPMENT

1.10.5 Fidelity of the Simulation

No simulation can be 100% accurate, and you may encounter differences between the
simulated and real worlds.

Distance Travelled and Angle Rotated

The simulator calculates distance traveled and rotation turned by the iRobot Create by
measuring its change in position. The real robot reports distance and angle by sensing
the movement of its wheels. In the simulator, distance is always unsigned. On the
real robot, distance is signed. A simple way to ensure the same behavior in simulation
and on the physical device is to use absolute values when calculating distance.

If the wheels on the real robot are slipping, the robot still reports this as distance
traveled and angle turned, since the wheels are still moving. In the simulator, only
actual movement of the robot is measured.

The simulator wraps all angles to [−180○,+180○]; the real robot does not.

Cliff Sensors

The infrared range finders on iRobot Create indirectly measure distance to the ground;
actually, they measure light intensity. Light intensity varies significantly between
different types of materials and lighting conditions. The simulator does not model
light intensity, and instead the cliff sensor signal values are directly proportional to
distance. On the real robot, these values may differ based on material and lighting
conditions. You may need to adjust thresholds between the simulator and the real
robot.

Subset of iRobot Sensors in the Simulator

Not all iRobot Create sensors are updated by the simulator, including charging sources
available, battery life, battery temperature, song playing, etc. The following sensors
are modeled by the CyberSim:

• Wall signal (boolean and raw)

1.10. EQUIPMENT: CYBERSIM 37

CHAPTER 1. EQUIPMENT

• Cliff signals (boolean and raw)
• Bumps and wheel drops (boolean)
• Distance traveled since last sensor packet (mm) – always unsigned
• Angle traveled since last sensor packet (deg) – always signed and wrapped to

[−180○,+180○].

1.10. EQUIPMENT: CYBERSIM 38

CHAPTER 1. EQUIPMENT

1.10.6 Troubleshooting

I receive Error 13, “File is not a Resource” when running CyberSim and a C State-
chart. This is a Windows operating system message relating to an issue loading your
Statechart DLL. The problem appears to be related to the compiler version used by
Visual Studio. Several recommendations for resolving the issue:

• Change from Debug to Release compile mode. In Visual Studio, from the top
menu bar, locate the configuration drop-down menu and select Release.

• If you are using Visual Studio Express 2013 for Desktop, change the Platform
Toolset to version 120. In Visual Studio, right-click on the libstatechart project
and from the context menu select Properties. In the libstatechart Property Pages
dialog, navigate to Configuration Properties - General. In the right pane, locate
the Platform Toolset setting and select Visual Studio 2013 (v120). Press OK to
save the setting and close the dialog.

• If you are using Visual C++ Express 2010, you do not need to change your
project settings. Right-click on the libstatechart project and select Rebuild. Then
try running CyberSim again.

I receive Error 1003, “The VI is not executable” when running CyberSim and a
LabVIEW Statechart. This error may occur for any of the following reasons:

• The Statechart source file has an error and is not executable. Check that the
Statechart can generate code and does not generate errors.

• The Statechart wrapper VI is not executable. This can occur if the Statechart is
not executable (see above) or if the VI has not been saved before executing in
CyberSim.

• The Statechart uses advanced libraries, such as PID, Advanced Analysis Library,
MathScript or others that are not supported. Use only base LabVIEW functions
in your Statechart.

I receive Error 1031, “VI Reference type does not match VI connector pane.” This
error may occur if there is a mismatch between CyberSim and the courseware you
downloaded. Ensure you are using the correct version of CyberSim and the associated
courseware.

I receive Error 1088, “The Parameter is Incorrect” when running CyberSim. This
error may occur when CyberSim is running from a folder that is on a network drive,
or whose path includes non-ASCII characters. Move the CyberSim folder to a new

1.10. EQUIPMENT: CYBERSIM 39

CHAPTER 1. EQUIPMENT

location, preferably on the C:\drive and in a path that does not include any special
characters.

1.10. EQUIPMENT: CYBERSIM 40

2
Sensor Interfacing and

Calibration

41

CHAPTER 2. SENSOR INTERFACING AND CALIBRATION

2.1 Interface to and Calibrate the WiiMote

These exercises guide you in calibrating and interpreting data from a digital sensor,
specifically the accelerometer from a popular gaming device. You will interface your
computer with the WiiMote via Bluetooth HID wireless link, obtain raw data from its
accelerometer, calibrate, and display the results in LabVIEW.

There are no prerequisites for this lab.

2.1. INTERFACE TO AND CALIBRATE THE WIIMOTE 42

CHAPTER 2. SENSOR INTERFACING AND CALIBRATION

2.1.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• §1.9.1 (Introduction to LabVIEW)
• §1.1.1 (Introduction to WiiMote)
• Introduction to Embedded Systems L (Lee and Seshia, 2015)

– Chapter 7: Sensors and Actuators §7.1 (Models of Sensors and Actuators) L

– Chapter 7: Sensors and Actuators §7.2.1 (Measuring Tilt and Acceleration) L

Skim these documents to understand their content and layout. You should be able to
quickly find relevant information within them. Sections pertaining to key topics may
be explicitly referenced, but you may need to reference other sections to complete
these exercises.

• Developing Algorithms Using LabVIEW MathScript RT Module: Part 1 - The
LabVIEW MathScript Node L (National Instruments, 2012a)

• Wii Remote4 (Wikipedia, 2013d)
• WiiMote4 (WiiBrew, 2012)
• Bluetooth HID Profile L (Bluetooth Special Interest Group, 2003)

– §“Introduction to the HID Protocol” L, p. 18-23
– §“BT HID Transaction Header” L, p. 57-64

• Using an Accelerometer for Inclination Sensing L (Fisher, 2010)
• Implementing a Tilt-Compensated eCompass using Accelerometer and Magne-

tometer Sensors L (Ozyagcilar, 2011)

These documents go beyond the scope of the core concepts of these exercises, and
are provided as additional resources.

• Getting Started with MathScript RT4 (National Instruments, 2012c)
• MathScript RT Module Functions4 (National Instruments, 2012e)

2.1. INTERFACE TO AND CALIBRATE THE WIIMOTE 43

http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/NationalInstruments_12_DevelopingAlgorithmsUsingLabVIEWMathScriptRtModule1.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/NationalInstruments_12_DevelopingAlgorithmsUsingLabVIEWMathScriptRtModule1.pdf
http://en.wikipedia.org/wiki/Wii_Remote
http://wiibrew.org/wiki/Wiimote
http://LeeSeshia.org/lab/releases/1.70/documents/BluetoothSpecialInterestGroup_03_BluetoothHIDProfile.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/BluetoothSpecialInterestGroup_03_BluetoothHIDProfile.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/BluetoothSpecialInterestGroup_03_BluetoothHIDProfile.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Fisher_10_UsingAnAccelerometerForInclinationSensing.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Ozyagcilar_11_ImplementingCompass.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Ozyagcilar_11_ImplementingCompass.pdf
http://zone.ni.com/reference/en-XX/help/373123C-01/lvtextmathmain/ms_getting_started/
http://zone.ni.com/reference/en-XX/help/373123C-01/lvtextmath/msfunc_classes/

CHAPTER 2. SENSOR INTERFACING AND CALIBRATION

2.1.2 Prelab Exercises

1. This exercise requires that you read about the WiiMote hardware. Part of the goal
of this exercise is to get familiar with how to find the required information. For each
question, visit the unofficial Wikipedia entry on WiiMote, or the unofficial WiiBrew
Wiki; where possible, verify against manufacturer specifications, though many internal
specifications have not been released.

(a) What is the manufacturer and model of the primary embedded computing system?
(b) What type of processor architecture is used by this embedded computing system?

You may need to perform an internet search on the system you identified in the
previous question.

(c) What is the type and size of the memory chip?
(d) What is the manufacturer and model of the accelerometer?
(e) What is the communication protocol and speed of the accessory connector port?

2. This exercise requires that you read about the Bluetooth interface to the WiiMote.
Part of the goal of this exercise is to get familiar with how to find the required
information. For each question, first visit the unofficial WiiBrew Wiki to locate the
relevant command sequence, then reference the official Bluetooth HID documentation
to decode its meaning. Use hexidecimal (0x__) notation for all numeric values.

(a) What is the command to enable LEDs 1 and 3? Identify the Transaction Header
(Transaction Type and Parameter), Report ID, and Payload (if present).

(b) Given the sequence to enable LEDs 1 and 3, how can it be modified to also
enable the rumble motor?

(c) What is the command to enable continuous reporting of the core buttons and
the three axes of the accelerometer (even if the device is at rest)? Identify the
Transaction Header (Transaction Type and Parameter), Report ID, and Payload
(if present).

(d) What is the Transaction Header transmitted by the WiiMote when sending a
report of its sensors?

3. Apply the affine function model of a sensor to interpret sensor data returned from
the WiiMote. Let a be the sensitivity of the accelerometer, b its bias, and x the
acceleration in one axis. Let f ∶R→N model the accelerometer, where f (x) is the
output of the accelerometer in response to acceleration x.

(a) Use the affine function model of a sensor to find f (x) in terms of x, a, and b.

2.1. INTERFACE TO AND CALIBRATE THE WIIMOTE 44

CHAPTER 2. SENSOR INTERFACING AND CALIBRATION

(b) The digital accelerometer transmits f (x) to a computer or embedded controller.
It is often useful in calculations to use the physical quantity of acceleration.
Solve the affine function model equation for x.

(c) A digital accelerometer measures acceleration and uses an internal ADC to
produce a digital output. The output of an ADC is often referred to as an ADC
unit. If x is given in units of g-forces (or just g), what are the units for a, b,
and f (x)?

2.1. INTERFACE TO AND CALIBRATE THE WIIMOTE 45

CHAPTER 2. SENSOR INTERFACING AND CALIBRATION

2.1.3 Lab Exercises

The following exercises reference files are distributed with this courseware. Once
downloaded and extracted, navigate to the folder

src\LabVIEW\WiiMote\

to locate files referenced by these exercises.

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments LabVIEW 2014
• National Instruments MathScript RT Module 2014
• Nintendo Wii Remote
• Bluetooth radio

1. Unblock a Library Dependency: When downloading files from an unsecure source
(such as the internet), Microsoft Windows blocks certain libraries from being loaded
on your computer. From the downloaded exercise files, navigate to

src\LabVIEW\WiiMote\Dependencies\

right-click on the file WiimoteLib.dll and select “Properties”. If at the bottom of the
Properties dialog you see a button

�� ��Unblock , press it followed by
�� ��OK to save the

library. You also need to navigate to

src\LabVIEW\WiiMote\Dependencies\32feet.NET\Assemblies\

and unblock InTheHand.Net.Personal.dll. The library is now unblocked and may be
loaded by LabVIEW.

2. Pair a desktop computer with the WiiMote: Open the VI WiiMote Pair.vi, which
pairs your desktop computer with your WiiMote. Given the MAC address of your
WiiMote, the VI searches available Bluetooth devices and will pair your device if its

2.1. INTERFACE TO AND CALIBRATE THE WIIMOTE 46

CHAPTER 2. SENSOR INTERFACING AND CALIBRATION

MAC address is found. Though the Windows operating system provides an interface
to pair Bluetooth devices, using this VI to pair by MAC address eliminates confusion
that arises when multiple WiiMotes are available.

You do not need to modify or view the block diagram of WiiMote Pair.vi. Key
in the MAC address of your WiiMote, and run the VI to pair. When pairing the
WiiMote, you must repeatedly and simultaneously press the 1 and 2 user buttons
for the entire pairing process. Continue to press and let go until the after VI has
completed (Fig. 2.1). When correctly paired, you should see a Windows notification
that a Bluetooth HID driver was installed, and the WiiMote should flash all four user
LEDs continuously. If the LEDs do not flash continuously, run the pair VI again.

Log

Discovering Devices...
Found 1 old and new devices
Found 1 new devices
Getting name ...
Device found: Nintendo RVL-CNT-01
Installing Wii Remote
00191D2F2054
5 second delay...

00:19:1d:2f:20:54

MAC address to pair

Figure 2.1: WiiMote Pair.vi, showing successful pairing with the WiiMote.

(a) What is the MAC address of your WiiMote?

3. Plot the uncalibrated accelerometer signal from the WiiMote: after pairing, open
and run WiiMote Interface.vi (Fig. 2.2). You do not need to modify this VI for this
exercise.

(a) What are the values of the x and y axes when the WiiMote is at rest on level
ground?

2.1. INTERFACE TO AND CALIBRATE THE WIIMOTE 47

CHAPTER 2. SENSOR INTERFACING AND CALIBRATION

STOP Transmit

00Report ID

00Payload

Calibration

Measure

Transmission

52HID Transmit

255

0

50

100

150

200

Sample
3000

y (raw)

z (raw)

x (raw)

0.00

0.00

0.00

Acceleration (uncalibrated)

1

-1

-0.5

0

0.5

Sample
3000

z calibrated (g)

x calibrated (g)

y calibrated (g)

0.00

0.00

0.00

Acceleration (calibrated)

0

magnitude (g)

180

-180

-100

0

100

Sample
3000

tilt (deg)

inclination (deg)

0.00

0.00

Orientation (calibrated)

x

y

z

x

y

z

tilt

inclination

0bias

1sensitivity

calibration (raw)

Figure 2.2: WiiMote Interface.vi Front Panel.

(b) What is the value of the z axis when the WiiMote is at rest on level ground?
What quantity is being measured?

4. Control the WiiMote actuators: In the front panel of WiiMote Interface.vi, modify
the values for Report ID and Payload to toggle user LEDs and to toggle the rumble
motor.

Hint: After an instruction has been sent to the WiiMote to turn off all four user LEDs, the
device appears to be powered off even though it is still running. To preserve battery life,
hold down the power button for three seconds when the device is no longer in use.

(a) What is the Report ID and Payload to turn WiiMote LEDs 2 and 4 on, and
LEDs 1 and 3 off?

(b) How can you modify the above sequence to also enable the rumble motor?

5. Measure sensitivity and bias of the accelerometer: The buttons on the front panel
are associated with panes in the Event Structure within the block diagram. To view the
subdiagrams for each event handled, use the scroll arrows next to the name of the event
handled. Modify the subdiagrams of the Event Structure so that, when the measure
bias or measure sensitivity button is pressed on the front panel, the corresponding
measurement recorded and displayed in the calibration (raw) control. You may assume

2.1. INTERFACE TO AND CALIBRATE THE WIIMOTE 48

CHAPTER 2. SENSOR INTERFACING AND CALIBRATION

the sensitivity and bias are approximately the same for all three axes. You do not
need to create new buttons or events for this exercise.

Hint: To retain your calibration parameters after LabVIEW is closed, right click on the
calibration (raw) control on the front panel and select “Data Operations→Make Current
Values Default”.

(a) Where are these measurements stored?
(b) What bias did you record?
(c) What sensitivity did you record?
(d) Provide screenshots of changes to the block diagram code.

6. Calibrate the accelerometer: modify the concents of the MathScript Node in
WiiMote Interface.vi so that the Accelerometer (calibrated) chart plots acceleration of
the x, y, and z axes, and the magnitude indicator displays the magnitude of acceleration,
all in units of g.

(a) What equations did you use to calibrate the accelerometer and to calculate the
magnitude of the acceleration it measures?

(b) Based on your calibration parameters and the number of bits of resolution of the
WiiMote ADC, and an affine model of the WiiMote accelerometer, what is your
estimate of the maximum acceleration that the WiiMote can measure?

(c) When the WiiMote is at rest, what should be the value of the magnitude indicator?
(d) Why is it better to perform calibration at runtime, rather than hard-coding values

for the sensitivity and bias of the sensor?
(e) Provide the relevant MathScript code and screenshots of changes (if any) to the

block diagram.

7. Measure Pitch and Roll: modify the contents of the MathScript Node in WiiMote
Interface.vi so that the Orientation (calibrated) chart plots pitch and roll of the WiiMote,
in units of degrees.

Hint: The coordinate system used in Implementing a Tilt-Compensated eCompass L

and the coordinate system used by the WiiMote (Fig. 1.3) are related by swapping the
x and y axes. Note that the definition for pitch and roll are switched in this document
compared to the pitch and roll in Figure. 1.3

(a) What equations did you use to calculate pitch and roll?
(b) Provide the relevant MathScript code and screenshots of changes (if any) to the

block diagram.

2.1. INTERFACE TO AND CALIBRATE THE WIIMOTE 49

http://LeeSeshia.org/lab/releases/1.70/documents/Ozyagcilar_11_ImplementingCompass.pdf

CHAPTER 2. SENSOR INTERFACING AND CALIBRATION

8. Filter the accelerometer signal: Accelerometers are often used to detect high
frequency signals such as noise and vibration; for a game controller, lower-frequency
movements of the user should be isolated. In particular, the rumble motor will
introduce a high-frequency signal. Implement a lowpass filter to smooth the signal of
the calibrated accelerometer when the rumble motor is on.

Hint: A simple lowpass filter is discussed in Implementing a Tilt-Compensated
eCompass L.

(a) Describe your filter, and include an equation for its impulse response, frequency
response, or its output as a function of input.

(b) Provide the relevant MathScript code and screenshots of changes (if any) to the
block diagram.

9. Share your Feedback: what did you like about this lab, and what would you
change?

2.1. INTERFACE TO AND CALIBRATE THE WIIMOTE 50

http://LeeSeshia.org/lab/releases/1.70/documents/Ozyagcilar_11_ImplementingCompass.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Ozyagcilar_11_ImplementingCompass.pdf

CHAPTER 2. SENSOR INTERFACING AND CALIBRATION

2.1.4 Troubleshooting

I receive Error 1172, “WiimoteLib.WiimoteNotFoundException” when running Wi-
iMote Interface.vi. This error occurs if your desktop is not paired with a WiiMote.
Run WiiMote Pair to pair again.

I am able to pair the WiiMote, but WiiMote Interface.vi either does not show input or
returns Error 1172 “WiimoteLib.WiimoteNotFoundException”. Check the WiiMote
batteries – when low, the device may stay powered on long enough to pair, only to
power off shortly thereafter. When first powered on and paired, the four LEDs should
remain flashing until the device is powered off, or the LED state is explicitly changed
by a Bluetooth command.

I am able to pair the WiiMote and run WiiMote Interface.vi, but after a few seconds
the output does not change in response to movement of the controller. Check the
WiiMote batteries – when low, the device may stay powered on long enough to pair,
only to power off shortly thereafter. When first powered on and paired, the four LEDs
should remain flashing until the device is powered off, or the LED state is explicitly
changed by a Bluetooth command.

I receive Error 1172, “Timed out waiting for status report”. This may occur if you
are using a WiiMote clone (i.e. not manufactured by Nintendo), and are not using
the WiiMoteLib binary distributed with the lab materials. In initializing the WiiMote,
the open-source WiiMoteLib verifies a vendor ID, which differs between authentic
and cloned WiiMotes. We modified the WiiMoteLib source to omit this call during
initialization, and provide the source as part of the downloadable lab materials.

I receive Error 1172, “Request for the permission of type... failed”. This is a Mi-
crosoft .NET exception, indicating WiimoteLib.dll could not be loaded from a network
drive. If possible, try moving your lab files to a local (i.e. C:) drive. If your
administrator has placed WiimoteLib.dll in a system directory, it is possible that
the WiimoteLib.dll is loading from your lab directory first; try renaming the file
WiimoteLib.dll to WiimoteLib.dll.bak and relaunch LabVIEW.

My VI is broken and raises the error, “Invalid Procedure” or “Function Not Found”
on the WriteStatusReport node. This may occur if you are not using the WiiMoteLib
binary distributed with the lab materials. The standard library does not allow external
programs to transmit arbitrary status report packets. A modified WiiMoteLib source

2.1. INTERFACE TO AND CALIBRATE THE WIIMOTE 51

CHAPTER 2. SENSOR INTERFACING AND CALIBRATION

and binary is provided as part of the downloadable lab materials. Make sure there are
no other instances of the WiiMoteLib library in the system path.

I receive the error, “Error 1386 occurred at Constructor Node in WiiMote Pair.vi:
The specified .NET class is not available in LabVIEW”. Ensure you have unblocked
the library file InTheHand.Net.Personal.dll by right-clicking on the file, selecting
Properties, and

�� ��Unblock .

2.1. INTERFACE TO AND CALIBRATE THE WIIMOTE 52

3
Embedded Development Tools

Writing software for embedded microcontrollers requires the use of one (or more)
development tools. Tools may be specific to the hardware, the programming languages,
or the models of computation used. Processor and microcontroller vendors often
provide proprietary development tools such as compilers, memory programmers, and
debuggers, but in many cases open-source solutions exist such as the GNU Compiler
Collection (gcc) and the GNU Debugger (gdb).

Sophisticated embedded development tools can be the product of thousands – sometimes
millions – of man hours, achieving complexity beyond what a single user could ever
hope to master. Embedded development tools may bring together a myriad of
components, including support for dozens of hardware targets or targets released over
the span of more than a decade, multiple compilers and debuggers, team development
features such as source control and revision control, execution timing and performance
analysis, software analysis, formal verification and validation, peripheral drivers, code
synthesis, and more. Technology and tools change, and while familiarity with a
collection of embedded development tools is a valuable skill, of greater value is the
ability to gain familiarity with a new tool or technology by quickly navigating terse
technical documentation, critically analyzing its functionalities, and contrasting it with
alternative tools and technologies.

The exercises in this chapter are prescriptive in nature and introduce you to common
tools for programming embedded systems. Completing these exercises will not make

53

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

you an expert in any one of the tools used – each of them is in fact the entire
subject matter of one or more textbooks. Focus instead on efficiently extracting useful
information from technical documentation, understanding the connection between the
tool and your embedded hardware, and becoming familiar with the tools used in later
chapters.

Figure 3.1: GNU logo (Suvasa, 2011).

54

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

3.1 Connect to and Configure myRIO

These laboratory exercises serve as a tutorial on connecting and configuring myRIO.
You will connect your myRIO to a host computer and reset it to its factory defaults.

There are no prerequisites for this lab.

3.1. CONNECT TO AND CONFIGURE MYRIO 55

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

3.1.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• §1.2.1 (Introduction to myRIO)

Skim these documents to understand their content and layout. You should be able to
quickly find relevant information within them. Sections pertaining to key topics may
be explicitly referenced, but you may need to reference other sections to complete
these exercises.

• myRIO 1950 User Guide and Specifications L (National Instruments, 2013g)

3.1. CONNECT TO AND CONFIGURE MYRIO 56

http://LeeSeshia.org/lab/releases/1.70/documents/NationalInstruments_13_myRioUserGuide1950.pdf

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

3.1.2 Prelab Exercises

For questions relating to exact specifications, be sure to reference the correct docu-
mentation for the model of myRIO you are using.

1. What is the CPU clock frequency of the ARM Cortex-A9 processor on myRIO?

2. In this exercise, you will explore the electrical characteristics of your myRIO. These
are important, as exceeding tolerances may damage or destroy your controller.

(a) What is the input voltage range for the controller power source?
(b) What is the analog input voltage range for single-ended measurements?
(c) What is the maximum current that may be sourced from a single DIO line?

3.1. CONNECT TO AND CONFIGURE MYRIO 57

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

3.1.3 Lab Exercises

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments NI-RIO 13.1
• National Instruments myRIO 1900 or 1950
• DC power supply
• USB cable

1. Connect myRIO: Connect a power supply to myRIO. When powered, the Power
LED on the controller will illuminate. Connect myRIO to your computer using a
standard USB cable. Windows should indicate a new device has been connected – if
this is the first time you connected the device to your computer, it may take a few
moments for Windows to install the driver.

2. Run the Getting Started Wizard: The myRIO USB Monitor should automatically
open when you connect myRIO to your computer. From within the myRIO USB
Monitor, press

�� ��Launch Getting Started Wizard . If the NI myRIO USB Monitor does
not automatically open, you may launch the Getting Started Wizard from the LabVIEW
myRIO start screen by selecting “Set Up and Explore→Launch the Getting Started
Wizard” (Fig. 1.21). Complete the wizard as follows:

(a) In the myRIO Discovery pane, verify that your myRIO device appears as
discovered. Click the device to continue to the next step.

(b) In the Rename your myRIO pane, optionally rename your myRIO device. Press�� ��Next to continue.
(c) If this is the first time the myRIO device has been configured, the wizard will

install software to the device.
(d) In the Test Onboard Devices pane, verify that the onboard accelerometer, LEDs,

and buttons are active and respond as expected. Press
�� ��Next to continue.

(e) In the final pane, you may choose to create a new project or open LabVIEW.
You may also press

�� ��Close to complete the wizard.

3. Discover myRIO using Measurement and Automation Explorer: MAX may be
launched from the Windows desktop or from the Windows Start menu under “National
Instruments→NI MAX”.

In the left navigation pane, expand Remote Systems to autodiscover National Instru-
ments devices on the local network (Fig. 3.3). Autodiscovery may take some time
to complete. If your myRIO appears under Remote Systems, it has been discovered

3.1. CONNECT TO AND CONFIGURE MYRIO 58

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

(Fig. 3.4). Click on the myRIO device to see detailed information about the target,
including the IP address of the Ethernet over USB adapter.

4. Configure myRIO using NI Web-Based Configuration and Monitoring: myRIO
supports a web-based configuration similar to NI MAX. Determine your target IP
address (shown in the NI myRIO USB Monitor or in NI MAX), and navigate to this
address using a standard web browser. Browse through the options to see more about
the software and peripherals on myRIO.

5. Share your Feedback: what did you like about this lab, and what would you
change?

3.1. CONNECT TO AND CONFIGURE MYRIO 59

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

Figure 3.2: Launch the myRIO Getting Started Wizard from the LabVIEW myRIO startup
screen.

Figure 3.3: NI MAX autodiscovery pending.

3.1. CONNECT TO AND CONFIGURE MYRIO 60

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

Figure 3.4: NI MAX autodiscovery showing a connected myRIO.

3.1. CONNECT TO AND CONFIGURE MYRIO 61

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

3.2 Program MicroBlaze from Xilinx SDK

These laboratory exercises serve as a tutorial on programming MicroBlaze on the
myRIO FPGA using Xilinx SDK. You will configure your development environment,
build a “Hello World” application in C from scratch, and connect to and program
MicroBlaze from Xilinx SDK.

This lab builds on Lab 3.1: Connect to and Configure myRIO.

3.2. PROGRAM MICROBLAZE FROM XILINX SDK 62

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

3.2.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• §1.3.1 (Introduction to MicroBlaze)

3.2. PROGRAM MICROBLAZE FROM XILINX SDK 63

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

3.2.2 Prelab Exercises

1. What are the differences between a traditional ‘fixed’ processor, an FPGA, and a
soft-core processor?

3.2. PROGRAM MICROBLAZE FROM XILINX SDK 64

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

3.2.3 Lab Exercises

The following exercises reference files are distributed with this courseware. Once
downloaded and extracted, navigate to the folder

src\XilinxSDK\

to locate files referenced by these exercises.

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments NI-RIO 13.1
• National Instruments myRIO 1900 or 1950
• DC power supply
• USB cable
• Xilinx SDK 14.4
• Xilinx Platform Cable USB II

1. Setup myRIO: Ensure myRIO is powered and connected to your computer. See
Lab 3.1: Connect to and Configure myRIO for instructions if you have not done this
before.Your Xilinx Platform Cable should be connected to your desktop via USB, and
to your myRIO via the JTAG header (J5). Refer to §A.5 (myRIO JTAG Wiring) for
the correct pin mappings. When properly connected, the Status light on the Platform
Cable will illuminate green. Connect another USB cable directly between myRIO and
your computer.

2. Deploy the MicroBlaze FPGA Fixed-Personality: MicroBlaze is implemented on
myRIO by deploying an FPGA fixed-personality. RIO Device Setup (Fig. 3.5) reads
a bitfile to reconfigure the FPGA. RIO Device Setup erases and reprograms the FPGA
of myRIO (or other NI RIO device). The tool downloads a bitfile directly to the flash
memory of the FPGA, and optionally configures it to load on startup. This is the
simplest way of deploying an FPGA fixed-personality that contains the MicroBlaze
soft-core processor. RIO Device Setup does not program the flash memory of the
ARM.

3.2. PROGRAM MICROBLAZE FROM XILINX SDK 65

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

(a) Launch RIO Device Setup from the Windows Start menu, “National Instruments→
NI-RIO→RIO Device Setup”.

(b) Pull-down the Resource menu and select “Browse...” to browse for the RIO0
(FPGA) target on myRIO.

(c) Press the browse button next to Bitfile to Download and navigate to the file
MicroBlaze_myRIO.lvbitx .

(d) Press
�� ��Download Bitfile to download the FPGA fixed-personality. This may take

a minute or two.

Press the reset button on your myRIO, and confirm the LED1 is glowing. It may take
a minute or two for the target to restart.

3. Launch Xilinx SDK: Xilinx SDK may be found in the Windows Start menu under
“Xilinx SDK→SDK→Xilinx Software Development Kit”. Upon launching, you may
be asked to select a workspace. A workspace organizes projects, perspectives, and
application preferences. Select a location to store your workspace, and Workbench will
create a workspace at this location if none exists. The Xilinx SDK prohibits spaces in
the workspace path. Make sure the location does not contain spaces, is writable, and
if possible avoid using a network drive or fileshare – this may cause problems with
the Xilinx compile toolchain.

If you are not prompted to select a workspace, then Workbench has been configured
to automatically load a default workspace. If you need to change to a new location,
then from the top menu bar select “File→Switch Workspace”.

Standard window configurations are available for various development tasks. For most
programming tasks, the Basic Device Development Perspective is sufficient. To open
this perspective, from the top menu bar select “Window→Open Perspective→Other...”
and select the “C/C++” perspective.

4. Import the MicroBlaze Specification: A hardware specification and board support
package are automatically generated by the same tool that builds the MicroBlaze
fixed-personality. Each is a project that will automatically generate source code needed
to interface with the MicroBlaze core. To import the hardware specification and board
support package, from the top menu bar select “File→Import...” to launch the Import
wizard:

(a) In the Select an import source panel, select “General→Existing Projects into
Workspace” and press

�� ��Next > .

3.2. PROGRAM MICROBLAZE FROM XILINX SDK 66

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

(b) In the Import Projects pane, press “Select archive file” and browse to MicroB-
lazeSpec_myRIO. The projects in the archive will automatically propagate (Fig.
3.8).

(c) Press
�� ��Finish to complete the import wizard.

The project will now appear in the Project Explorer view. You will see a project
titled MicroBlaze_Hardware_Specification, a hardware description project that contains
information about myRIO and how MicroBlaze is be implemented on it. MicroB-
laze_Software_Specification is a board support package, which provides drivers to
hardware peripherals on myRIO. You do not need to modify either of these projects,
but feel free to explore their content.

To build the MicroBlaze specification, from the top menu bar select “Project→Clean...”
and in the Clean dialog, press

�� ��OK . Then from the same menu bar, select “Project→
Build All”.

5. Create a New Project: Right-click in an empty area of the Project Explorer, and
select “New→Project...”. A new project wizard will open:

(a) In the Select a wizard pane, select “Xilinx→Application Project” and press�� ��Next > .
(b) In the New Project pane, set Project name to helloWorldMicroBlaze. Ensure the

Hardware Platform is set to “MicroBlazeHardwareSpecifications” and Processor
is set to “microblaze_0”, OS platform is set to “standalone”. Set the Board
Support Package to use the existing “MicroBlazeSoftwareSpecifications”. Ensure
your dialog matches Fig. 3.6, and press

�� ��Next > .
(c) In the Templates pane, choose “Hello World”. Press

�� ��Finish to complete the
New Project wizard.

When the project wizard completes, your development environment should return to
the C/C++ Perspective, with the helloWorldMicroBlaze project now appearing in the
Project Explorer.

6. Review the Template Code: The New Project wizard automatically creates a C
source file. In the Project Explorer, expand the helloWorldMicroBlaze project and open
src/helloworld.c. In the main() function, you will see a call to the print() function,
a function similar to printf() in the standard C library but specific to MicroBlaze.
The standard output defaults to a serial port.

3.2. PROGRAM MICROBLAZE FROM XILINX SDK 67

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

To compile the source code, from the top menu bar select “Project→Build Project”.
The Build Console at the bottom of your workspace will show the results of the
compilation.

7. Create and Execute a Run Configuration: A Run Configuration is a script that
will build, download, and execute your project on your target. To create a Run
Configuration:

(a) From the top menu bar select “Run→Run Configurations...”.
(b) In the Run Configurations wizard, right-click on Xilinx C/C++ ELF and select

“New”.
(c) Select the STDIO Connection tab to configure standard output for the target.

Check the option Connect STDIO to Console and from the drop-down menu
select “JTAG UART”. This configures standard output – used by functions like
print() – to transmit over a JTAG serial port. Xilinx SDK will automatically
spawn a console that displays messages from this port.

(d) Select the Debugger Options tab and uncheck the option “Stop at main()
when debugging”. This enables your application to immediately execute after
downloading to the target – otherwise, the debugger will place a breakpoint at
the first line of the main() function.

(e) Lastly, to place this Run Configuration in the list of favorites, open the Common
tab. Under the Display in favorites menu section, check the box next to “Run”.
Then click

�� ��Run to save the configuration and execute the run script.

Review the Console pane to view STDIO output. If your application compiled,
downloaded, and was correctly executed, you should see the text Hello World appear.

8. Revise and Run Again: Change the print message to something new. Save the file
and build the project.

To stop the currently executing process on MicroBlaze, you first need to stop the
processor. The XMD Console pane is used to issue commands to MicroBlaze and
display debug messages via UART over JTAG – you must first have run your
application to connect to your target over JTAG for the XMD Console to be connected
to your target. From the top menu bar, select “Xilinx Tools→XMD Console”. In the
XMD Console pane, enter the following three commands to stop execution and reset
the MicroBlaze processor: rst, stop, and rst.

Execute your run configuration to see the new message. Congratulations on using
Xilinx SDK to build your first MicroBlaze application for myRIO!

3.2. PROGRAM MICROBLAZE FROM XILINX SDK 68

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

9. Share your Feedback: what did you like about this lab, and what would you
change?

3.2. PROGRAM MICROBLAZE FROM XILINX SDK 69

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

Figure 3.5: RIO Device Setup used to deploy the MicroBlaze FPGA fixed-personality to
myRIO.RIO Device Setup

3.2. PROGRAM MICROBLAZE FROM XILINX SDK 70

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

Figure 3.6: Xilinx Project Wizard.

3.2. PROGRAM MICROBLAZE FROM XILINX SDK 71

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

Figure 3.7: Xilinx SDK in the C/C++ perspective.

3.2. PROGRAM MICROBLAZE FROM XILINX SDK 72

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

Figure 3.8: Xilinx SDK Import Wizard to import an existing project.

3.2. PROGRAM MICROBLAZE FROM XILINX SDK 73

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

3.2.4 Troubleshooting

The template project builds with errors: If the template code does not build, the
correct include files may not have been generated. Double-check that you have
imported the MicroBlaze specification (Fig. 3.8) and have cleaned and built all
projects before running the New Project wizard.

When using the New Project wizard to create a Xilinx Application Project to target
MicroBlaze, nothing appears in Available Board Support Packages: Double-check
that you have imported the MicroBlaze specification (Fig. 3.8) and have cleaned and
built all projects before running the New Project wizard.

When running, I receive the error “Failed to Open JTAG Cable” or the console
prints “Error opening JTAG UART”: Double-check the wiring of the Platform USB
cable (refer to §A.5 (myRIO JTAG Wiring) for the correct pin mappings), that myRIO
is powered, and that the Status light on the Platform USB cable is green. Disconnect
the USB cable and reconnect - Windows should indicate a recognized device has been
installed.

I receive the error, “ERROR: Cannot perform the Debug Command, Current Pro-
cessor State is ‘Running’ ”. This error typically occurs immediately after the FPGA
has been reprogrammed, and indicates the MicroBlaze processor is not in a state
that can accept debug connections. First attempt to build and run your application,
double-checking that you have set the build configuration to connect the STDIO
Console to JTAG UART. In the XMD Console, enter the command rst to reset the
processor to its initial state, followed by stop to stop the execution of the MicroBlaze
processor. The processor should now be in its normal execution state and be able to
accept debug connections.

I cannot see the XMD (debug) console: print() statements in software are relayed
via JTAG to your desktop computer. The Xilinx XMD Console displays these messages.
First, be sure that the Basic Device Development Perspective (C/C++) perspective is
open (Step 3). If the console is still not visible, it can be launched manually. From the
top menu bar, select “Xilinx Tools→XMD Console”. The console is then connected to
your target by entering the text terminal at the XMD: prompt and pressing enter.
A console window should appear, and will display any print() messages generated
by software running on MicroBlaze.

3.2. PROGRAM MICROBLAZE FROM XILINX SDK 74

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

I receive the XMD Console error, “Error opening JTAG UART localhost:-1”: This
may be caused by trying to download and run a program without stopping the previous
code. To resolve, disconnect and reconnect the JTAG USB cable, reset myRIO,
and restart Xilinx SDK. To prevent this from happening, be sure to terminate your
application or debugging session before downloading and running again.

The XMD Console is empty: Ensure the build configuration is correct. First try
pressing the user Button on myRIO to reset MicroBlaze. If that does not work, then
reset myRIO and restart Xilinx SDK.

3.2. PROGRAM MICROBLAZE FROM XILINX SDK 75

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

3.3 Program the myRIO Processor from Eclipse

These laboratory exercises serve as a tutorial on programming the myRIO processor
using C & C++ Development Tools for NI Linux Real-Time, Eclipse Edition, an
Eclipse-based IDE. You will configure your development environment, build a “Hello
World” application in C, and connect to and program the ARM processor in Eclipse.

This lab builds on Lab 3.1: Connect to and Configure myRIO.

Figure 3.9: Eclipse for NI Linux Real-Time (based on Eclipse Juno). Eclipse logo is a
trademark of the Eclipse Foundation.

3.3. PROGRAM THE MYRIO PROCESSOR FROM ECLIPSE 76

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

3.3.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• §1.8.1 (Introduction to Eclipse)

3.3. PROGRAM THE MYRIO PROCESSOR FROM ECLIPSE 77

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

3.3.2 Prelab Exercises

There are no prelab exercises for this lab.

3.3. PROGRAM THE MYRIO PROCESSOR FROM ECLIPSE 78

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

3.3.3 Lab Exercises

The following exercises reference files are distributed with this courseware. Once
downloaded and extracted, navigate to the folder

src\myRIO\

to locate files referenced by these exercises.

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments NI-RIO 13.1
• National Instruments myRIO 1900 or 1950
• DC power supply
• USB cable
• C & C++ Development Tools for NI Linux Real-Time, Eclipse Edition

1. Setup myRIO: Ensure myRIO is powered and connected to your computer. See
Lab 3.1: Connect to and Configure myRIO for instructions if you have not done this
before.

2. Enable SSH: Your computer communicates with myRIO using the SSH protocol.
This allows you to see printf() messages transmitted from myRIO to your
computer, and to interact with myRIO using standard Linux shell commands. You
may use NI MAX to enable terminal access, or you may use the web configuration
by opening your internet browser:

(a) Navigate to http://172.22.11.2 in the web browser on the host computer. If your
myRIO is configured with an alternate IP address, use this address instead.

(b) The Web Configuration interface will open in your browser. In the left navigation
bar, select System Configuration (the icon of a home), and under the Startup
Settings section, check the open to “Enable Secure Shell Server (sshd)”.

(c) Click
�� ��Save to apply the new setting.

(d) Click Restart on the upper right of the page to restart myRIO.

3. Launch Eclipse: C & C++ Development Tools for NI Linux Real-Time, Eclipse
Edition may be found in the Windows Start menu under “National Instruments→C &

3.3. PROGRAM THE MYRIO PROCESSOR FROM ECLIPSE 79

http://172.22.11.2

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

C++ Development Tools for NI Linux Real-Time, Eclipse Edition”. Upon launching,
you may be asked to select a workspace. A workspace organizes projects, perspectives,
and application preferences. Select a location to store your workspace – Eclipse will
create a workspace at this location if none exists. The location must be writable.

If you are not prompted to select a workspace, then Eclipse has been configured to
automatically load a default workspace. If you need to change to a new location, then
from the top menu bar select “File→Switch Workspace”.

4. Import the Template Project: The myRIO project template specifies the compile
toolchain used to compile programs for myRIO; the cross-compile toolchain executes
on your desktop and compiles your program for the ARM processor on myRIO.
The project further specifies a run specification to execute the successfully compiled
program.

To import the myRIO project template, from the top menu bar select “File→Import...”
to launch the Import wizard:

(a) In the Import panel, select “General→Existing Projects into Workspace” and
press

�� ��Next > .
(b) In the Import Projects pane, press “Select archive file” and browse to

C_Support_for_NI_myRIO_v1.0.zip

Several projects are available for import; the example projects are a useful
resource but not needed for this lab, so deselect all example projects, leaving
only C Support for NI myRIO and myRIO Template.

Press
�� ��Finish to complete the import wizard.

5. Rename the Template Project: In the Project Explorer view, right-click on the
project myRIO Template and select “Rename...”. Rename the project myRIO Hello
World.

6. Set Model Number: Set a project-level symbol to specify which model of myRIO
you are using. This informs the generated C code about the pin configurations and
peripherals. Right-click on the myRIO Hello World project and select “Properties” to
open project settings. Navigate to “C/C++ General→Paths and Symbols” and open the
#Symbols tab to see project-level symbols that are defined across all source files in
the project. There are a number of symbols that are built-in for compiler, operating
system, and Eclipse settings – you may wish to uncheck “Show built-in values” to

3.3. PROGRAM THE MYRIO PROCESSOR FROM ECLIPSE 80

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

show only symbols you have defined. The symbol MyRio_1900 is defined by default;
delete this symbol and create a new symbol MyRio_1950 to instruct the compiler to
build for the correct hardware version.

To verify the project settings are correct and that the project can be built, from the
top menu bar select “Project→Build All”. Watch the Console to verify all projects
build successfully.

7. Create a Remote Target: To view connections to remote systems, use the Remote
System Explorer (RSE) perspective. To open this perspective, from the top many bar
select “Window→Open Perspective→Other” and choose “Remote System Explorer”.

From the top menu bar select “File→New→Other...” to launch the New Connection
wizard:

(a) In the Select a wizard panel, select “Remote System Explorer→Connection” and
press

�� ��Next > .
(b) In the Select Remote System Type panel, select “Linux” and press

�� ��Next > .
(c) In the Remote Linux System Connection panel, enter the IP address of your

myRIO into the Host name field and the name “myRIO” into the Connection
name field and press

�� ��Next > .
(d) In the Files panel, choose the configuration “ssh.files” to indicate the filesystem

connection protocol. Press
�� ��Next > .

(e) In the Processes panel, choose the configuration “processes.shell.linux” to indicate
the Shell process subsystem for connecting to remote processes. Press

�� ��Next > .
(f) In the Shells panel, choose the configuration “ssh.shells” to indicate the shell

and command protocol. Press
�� ��Next > .

(g) In the Ssh Terminals panel, choose the configuration ssh.terminals to indicate the
terminal protocol.

(h) Press
�� ��Finish to complete the New Connection wizard.

You should now see your myRIO target appear in the Remote Systems pane (Fig.
3.10).

8. Connect to myRIO: From the Remote Systems pane, right-click on your myRIO
target and select “Connect”. Confirm the IP address, and enter “admin” and leave
the password blank. Choose to save the username and password for convenient
reconnecting (Fig. 3.11). Press

�� ��OK to connect.

3.3. PROGRAM THE MYRIO PROCESSOR FROM ECLIPSE 81

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

Figure 3.10: Remote System Explorer Perspective.

Figure 3.11: Remote system connection configuration. NOTE: The username ‘admin’
should be used instead of ‘root’.

3.3. PROGRAM THE MYRIO PROCESSOR FROM ECLIPSE 82

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

You may receive a security warning that the authenticity of the target could not be
independently verified (Fig. 3.12). You may disregard this warning.

Figure 3.12: An expected security warning that may be disregarded.

When connected, a green arrow should appear over the target icon in the Remote
Systems panel. You can verify the target is connected by right-clicking on the target
icon – if “Disconnect” appears in place of “Connect” in the context-menu, then your
target is connected.

Next, launch a terminal window which will allow you to interact with the Linux
shell on myRIO. Expand the myRIO target, right-click on Ssh Terminals, and select
“Launch Terminal”. A terminal pane should appear in the bottom part of the perspective.
Standard output messages are displayed on this terminal, and you may interact with
the shell as with any Linux machine. Enter the command

uname --all

to display information about the Linux operating system on myRIO (Fig. 3.13).

Figure 3.13: Terminal command running on myRIO that displays Linux kernel information.

3.3. PROGRAM THE MYRIO PROCESSOR FROM ECLIPSE 83

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

9. Transfer the FPGA Fixed-Personality to myRIO: The FPGA on myRIO may be
configured with an FPGA fixed-personality stored in a LabVIEW bitfile (.lvbitx) file.
In the Remote Systems pane, expand “myRIO→Sftp Files” to see the filesystem on
myRIO. Navigate to the folder

/var/local/natinst/

Right-click on the folder “natinst” and select “New→ Folder”. Name the folder
“bitfiles”. Right-click on the newly created “bitfiles” folder and select “Export from
Project...”. Navigate to the source folder

C Support for NI myRIO\source

and check to include NiFpga_myRio[model] Fpga10.lvbitx . No other files or folders
should be checked. Verify that the destination folder indicates the “bitfiles” folder.
Click

�� ��Finish to transfer the file, and verify the file now appears in the Remote
Systems pane under the “bitfiles” folder.

When your application executes on the target, the myRIO initialization code will open
the correct bitfile and program it to the FPGA.

10. Write a Hello World Message: Most programming tasks are performed in the
C/C++ perspective. To open this perspective, from the top menu bar select “Window→
Open Perspective→Other” and choose “C/C++”.

Expand the myRIO Hello World project and open the file main.c Add the statement
printf("Hello, World!\n"); after the comment /* Your application code goes here.*/.

To compile the source code, from the top menu bar select “Project→Build Project”.
The Problems tab at the bottom of your workspace will show the results of the
compilation – if there are errors (hopefully just typos), you must resolve them before
continuing to the next step.

11. Create a Debug Configuration: Debug configurations are used to build your
application, download the executable to the remote target, and attach Eclipse to a
remote debugging session. Create a new debug configuration by navigating to the top
menu bar “Run→Debug Configurations...”. In the Debug Configurations dialog, expand
C/C++ Remote Application and open the myRIO Template configuration. Configure
the debug configuration as follows:

3.3. PROGRAM THE MYRIO PROCESSOR FROM ECLIPSE 84

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

(a) Set the Name to “myRIO Hello World”.
(b) In the Main pane:

i. Select the application to run by pressing
�� ��Search Project... under C/C++

Application. If your program compiled successfully, the project myRIO Hello
World will appear in the Program Selection dialog. Select it and press

�� ��OK .
ii. For connection profile, ensure “myRIO” is selected.

iii. Set Remote Absolute File Path to

/home/admin/myRIOHelloWorld

(c) In the Debugger tab, ensure GDB Debugger ensure the GDB debugger is set to

arm-none-linux-gnueabi-gdb.exe

(d) Press
�� ��Apply followed by

�� ��Close to save settings and close the configuration
window.

12. Launch a Debug Session: From the top menu bar, select “Run→Debug Config-
urations...” to open the Debug Configurations window. In the left navigation pane,
select the debug configuration you created in the previous step, and press

�� ��Debug to
launch a debug session. Eclipse may prompt to open the Debug perspective, which
contains several useful debugging views. Click

�� ��Yes to open the Debug perspective.

The Console contains several views. To open the Remote Shell view, press the

“Display Selected Console” button until the console displayed reads “myRIO
Hello World [C/C++ Remote Application] Remote Shell”.

The debugger will stop at the first line of the main() function. To execute the first
line, from the top menu bar select “Run→Step Over”. The console should display the
message, “Hello, World!”. To complete execution of your application, from the top
menu bar select “Run→Resume”.

If the debugger exits successfully and you see the printed message on the console,
then your code has been correctly cross-compiled, downloaded to the target, and
remotely debugged. Next, you will configure your project to connect to the hardware
peripherals on myRIO.

13. Write an I/O Application: Modify main.c to access the hardware peripherals
on myRIO. At the top of the source file, include the myRIO header, and revise

3.3. PROGRAM THE MYRIO PROCESSOR FROM ECLIPSE 85

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

the main() function to open turn on an LED. Add the line extern NiFpga_Session

myrio_session; immediately following the #include statements, and add the following
lines after your print statement:

/* Set the LED register to 1, turning on LED 1 */

status = NiFpga_WriteU8(myrio_session , DOLED30 , 0x01);

/* Print error messages (if any) from the DIO write */

MyRio_PrintStatus(status);

The complete program is shown below.

#include <stdio.h>

#include "MyRio.h"

extern NiFpga_Session myrio_session;

int main(int argc , char **argv)

{

NiFpga_Status status;

status = MyRio_Open ();

if (MyRio_IsNotSuccess(status))

{

return status;

}

/*

* Your application code goes here.

*/

printf("Hello , World!\n");

/* Set the LED register to 1, turning on LED 1 */

status = NiFpga_WriteU8(myrio_session , DOLED30 , 0x01);

/* Print error messages (if any) from the DIO write */

MyRio_PrintStatus(status);

status = MyRio_Close ();

return status;

}

3.3. PROGRAM THE MYRIO PROCESSOR FROM ECLIPSE 86

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

Compile, download, and run your application on the target. If LED 1 illuminates,
and you receive no error messages on the console, the program executed correctly.
Congratulations on using Eclipse to build your first C application for myRIO!

Hint: If the Eclipse Problems pane indicates an error that the symbol DOLED30

cannot be resolved, this is actually a problem with the built-in Code Analyzer. See
Troubleshooting below for an explanation and simple workaround.

14. Share your Feedback: what did you like about this lab, and what would you
change?

3.3. PROGRAM THE MYRIO PROCESSOR FROM ECLIPSE 87

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

3.3.4 Troubleshooting

I receive the compile error, “Cannot run program "arm-none-linux-gnueabi-gcc":
Launching failed”. Eclipse is unable to find the cross-compile toolchain. The compile
toolchain is expected to be enumerated in the system PATH environment variable,
which is typically set by your laboratory administrator. If you are the administrator
of your build machine, see section §A.3 (Install C & C++ Development Tools) for
instructions on how to set the environment variable. If you are unable to change the
system or user PATH environment variable, one workaround is to specify the path to
the cross-compile toolchain in your project settings:

In the Project Explorer, right-click on myRIO Project, and in the context menu select
“Properties”. Navigate to “C/C++ Build→Settings”, and in the Tool Settings tab select
“Cross Settings”. Set the Prefix field to

arm-none-linux-gnueabi-

to inform the compiler that the project should be compiled for ARM architectures in
the Linux operating system using the GNU open-source compiler. In the Path field,
press the

�� ��Browse... button to navigate to the location of the cross-compile toolchain,
which is by default:

C:\Program Files (x86)\National Instruments\Eclipse\toolchain\gcc-4.4-arm\i386\bin

Remove “ (x86)” from the path if you are on a 32-bit operating system. Clean and
rebuild your project with the new settings. If the error still occurs, consult Eclipse
documentation and verify that the compile toolchain has been installed to the National
Instruments install directory.

I receive error RSEG1066, “Failed to connect sshd on ‘x.x.x.x:22’ ”. This error
occurs if Eclipse cannot connect to myRIO, or an existing session has timed out. Try
connecting again in case a timeout has occurred. Double-check the IP address of
myRIO and that Eclipse is not blocked by any firewall. Refer to §3.1 (Connect to and
Configure myRIO) for details on connecting to myRIO.

My process terminates with error code -61024: This corresponds to a device type
mismatch when loading the fixed personality on myRIO. Double-check that the correct
symbol MyRio_1950 is defined for your project.

3.3. PROGRAM THE MYRIO PROCESSOR FROM ECLIPSE 88

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

The Eclipse Problems pane shows an unresolved symbol, but the Console output
indicates a successful build: If the Eclipse Problems pane indicates an error that a
symbol (such as DOLED30) cannot be resolved, this is actually a problem with the
built-in Code Analyzer. Open the Console pane to see the output of the cross-compiler
– if it indicates the program was built successfully, then you may ignore the unresolved
symbol warning in the Problems pane. To prevent the Code Analyzer from falsely
reporting this problem, you may disable the feature by right-clicking on your project,
selecting Properties, navigating to “C/C++ General→Code Analysis”, selecting to
Use project settings and unchecking “Syntax and Semantic Errors→Symbol is not
resolved”.

3.3. PROGRAM THE MYRIO PROCESSOR FROM ECLIPSE 89

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

3.4 Program the myRIO Processor from LabVIEW

These laboratory exercises serve as a tutorial on programming the ARM processor on
myRIO using National Instruments LabVIEW. You will build a acceleration indicator
application that turns on LEDs when acceleration is exceeded on each axis of the
onboard accelerometer.

This lab builds on Lab 3.1: Connect to and Configure myRIO.

3.4. PROGRAM THE MYRIO PROCESSOR FROM LABVIEW 90

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

3.4.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• §1.9.1 (Introduction to LabVIEW)

3.4. PROGRAM THE MYRIO PROCESSOR FROM LABVIEW 91

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

3.4.2 Prelab Exercises

There are no prelab exercises for this lab.

3.4. PROGRAM THE MYRIO PROCESSOR FROM LABVIEW 92

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

3.4.3 Lab Exercises

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments LabVIEW 2014
• National Instruments LabVIEW for myRIO Module 2014
• National Instruments LabVIEW Real-Time Module 2014
• National Instruments NI-RIO 13.1
• National Instruments myRIO 1900 or 1950
• DC power supply
• USB cable

1. Setup myRIO: Ensure myRIO is powered and connected to your computer. See
Lab 3.1: Connect to and Configure myRIO for instructions if you have not done this
before.

2. Launch LabVIEW: LabVIEW may be found in the Windows Start menu under
“National Instruments→LabVIEW National Instruments LabVIEW 2014 →LabVIEW
National Instruments LabVIEW 2014 ”. Upon launching, you will see the Getting
Started dialog which links to recent files, projects, and help documents.

3. Create a Project: From the top menu of the Getting Started dialog, select “File→
Create Project...” to launch the Create Project Wizard. Navigate to “Templates→
myRIO→myRIO Project” and select

�� ��Next .

In the Configure the new project dialog, name your project Acceleration Threshold and
choose a location to save your project files. Your myRIO should automatically appear
under the Select Target pane – if not, first verify that you can see your myRIO in NI
MAX, and re-run the wizard.

Select
�� ��Finish to complete the Create Project Wizard. The Project Explorer will

automatically open with your new project. The Project Explorer is used to connect to
myRIO and organize VIs that will run on the target processor.

4. Run the Template VI: Open the top-level VI that will execute on the processor
by navigating in the Project Explorer to “Project Acceleration Indicator.lvproj→
myRIO→Main.vi”. A template VI has been created that reads data from the onboard
accelerometer and displays it on a graph. On clicking the Run button, the VI will

3.4. PROGRAM THE MYRIO PROCESSOR FROM LABVIEW 93

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

be deployed to myRIO and run. Verify that the accelerometer data is shown on your
screen.

5. Modify the Template VI: In the block diagram of Main.vi, replicate the code shown
in Figs. 3.14 – 3.15:

(a) LED Express VI (“myRIO→Onboard→LED” in the palette). The Express VI
will open a configuration dialog; uncheck LED3 and press

�� ��OK to save the
configuration.

(b) Three Greater? nodes that will be used to compare accelerometer values to a
threshold.

(c) Wire the ‘x’ (top) input of the first Greater? node to the x output of the
Accelerometer VI, and similarly connect the remaining two Greater? nodes to
the y and z axes.

(d) On the front panel, create a new Numeric Control and label it Acceleration
Threshold (g). Set its initial value to 0.5. Right click on the control and from the
context menu select “Data Operations→Make Current Value Default”. On the
block diagram, wire this control to the ‘y’ (bottom) input of each Greater? node.

(e) Wire the output of the x axis comperator to the LED0 input of LED VI, and
similarly connect the output of the y and z comperators to LED1 and LED2.

(f) On the front panel, create three LED indicators. Label the first x axis threshold,
and and similarly for the y and z axes. On the block diagram, wire these to the
corresponding output of the comparators.

Run the VI to compile your application, download to myRIO, begin execution, and
display debugging information to the front panel. You should see the onboard LEDs
illuminate when acceleration on the corresponding axis of the onboard acclerometer
exceeds the Acceleration Threshold (g).

Congratulations on completing your first LabVIEW application for myRIO! To run
your application again, simply press the Run button in the top toolbar.

6. Share your Feedback: what did you like about this lab, and what would you
change?

3.4. PROGRAM THE MYRIO PROCESSOR FROM LABVIEW 94

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

Stop

1

-0.2

0

0.2

0.4

0.6

0.8

Samples
1000

Y-Axis

Z-Axis

X-Axis

The myRIO Project template acquires acceleration data from the onboard accelerometer and displays the changes of
acceleration values in a waveform chart.

0

code

source

status

error out

0.5

Acceleration Threshold (g) x threshold y threshold z threshold

Figure 3.14: Threshold Indicator application front panel.

3.4. PROGRAM THE MYRIO PROCESSOR FROM LABVIEW 95

CHAPTER 3. EMBEDDED DEVELOPMENT TOOLS

Initialize

#CodeNeeded - Add
code to initialize your
user interface and
hardware here.

0

Acquire and process data

Main Loop

Stop Button

10

AccelerationX-Axis
Y-Axis
Z-Axis

Accelerometer

LED0
LED1
LED2

LED

Acceleration Threshold (g)

x threshold
y threshold
z threshold

Close

Reset myRIO.vi

error out

You can configure the Accelerometer Express VI by double-clicking it.
You can find other myRIO Express VIs in the myRIO palette.

Figure 3.15: Threshold Indicator application block diagram (Main Loop only).

3.4. PROGRAM THE MYRIO PROCESSOR FROM LABVIEW 96

4
Programming Embedded Systems

97

CHAPTER 4. PROGRAMMING EMBEDDED SYSTEMS

4.1 Generate Tones in MicroBlaze

Contributing Author: Trung N. Tran

This lab focuses on interrupts. Using the MicroBlaze soft-core processor programmed
on myRIO you will write C code to configure timers and generate tones using DIO
lines. Your software executes “bare-metal”, or in the absence of a scheduling kernel or
operating system, and has exclusive access to the microcontroller processor, memory,
and peripherals.

These exercises guide you in configuring timed interrupts using memory-mapped
registers on an embedded microcontroller. A timed interrupt is an interrupt that is
generated by a hardware clock, usually periodically. For many, the first experience
programming interrupts is challenging: interrupts are documented in verbose documen-
tation, the embedded system being programmed may not have a display or debugging
interface, and breaking from the sequential model of traditional programming languages
introduces new complexities (Lee, 2006). Inherent in these exercises is the importance
of navigating technical documentation to solve a problem.

This lab builds on Lab 3.2: Program MicroBlaze from Xilinx SDK.

4.1. GENERATE TONES IN MICROBLAZE 98

CHAPTER 4. PROGRAMMING EMBEDDED SYSTEMS

4.1.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• §1.3.3 (Interrupts on MicroBlaze)
• §1.3.4 (MicroBlaze and AXI Bus Architecture)
• §1.3.5 (Memory-Mapped Register Interface to Digital IO)
• Introduction to Embedded Systems L (Lee and Seshia, 2015)

– Chapter 9: Memory Architectures §9.2.1 (Memory Maps) L

– Chapter 9: Memory Architectures §9.2.2 (Register Files) L

– Chapter 10: Input and Output §10.2 (Sequential Software in a Concurrent
World) L

Skim these documents to understand their content and layout. You should be able to
quickly find relevant information within them. Sections pertaining to key topics may
be explicitly referenced, but you may need to reference other sections to complete
these exercises.

• Embedded System Tools Reference Manual L (Xilinx, 2012a)
– Chapter 9: GNU Compiler Tools, §“Interrupt Handlers”, p.133 L

• LogiCORE IP AXI INTC L (Xilinx, 2013b)
– §Introduction, p.1-6 L

– §Register Descriptions, p.13-19 L

– §Software Considerations, p.24 L

• LogiCORE IP AXI Timer L (Xilinx, 2012b)
– §Introduction, p.1-5 L

– §Register Data Types and Organization, p.11-15 L

These documents go beyond the scope of the core concepts of these exercises, and
are provided as additional resources.

• MicroBlaze Interrupts and the EDK L (Hickok, 2009)

4.1. GENERATE TONES IN MICROBLAZE 99

http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Xilinx_12_EmbeddedSystemToolsReferenceManual.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Xilinx_12_EmbeddedSystemToolsReferenceManual.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Xilinx_13_LogiCoreIpAxiIntc.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Xilinx_13_LogiCoreIpAxiIntc.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Xilinx_13_LogiCoreIpAxiIntc.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Xilinx_13_LogiCoreIpAxiIntc.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Xilinx_13_LogiCoreIpAxiTimer.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Xilinx_13_LogiCoreIpAxiTimer.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Xilinx_13_LogiCoreIpAxiTimer.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Hickok_09_MicroBlazeInterruptsEDK.pdf

CHAPTER 4. PROGRAMMING EMBEDDED SYSTEMS

4.1.2 Prelab Exercises

1. In this exercise, you will explore the memory-mapped register interface to the
interrupt controller in MicroBlaze.

(a) Which register must be configured to enable the interrupt controller to interrupt
the processor in response to an interrupt request?

(b) Which register must be configured for the interrupt controller to accept (respond)
to an interrupt signal?

(c) After the processor receives an interrupt request and executes the interrupt service
routine, which register identifies enabled and active interrupts?

(d) At the end of an interrupt service routine, which register should be written to
clear the interrupt request?

(e) Write a single C statement to clear interrupt requests. The statement should clear
only interrupts which are enabled and active. You may assume the abbreviation
of a register name is defined as its memory address.

2. What is the meaning of the interrupt_handler compiler attribute?

3. In this exercise, you will explore the memory-mapped register interface to the timer
peripheral in MicroBlaze.

(a) Which register must be configured to enable the Timer0? Which bit(s) must be
set?

(b) Which register holds the value used to set the period of Timer0? How does
Timer0 load this value?

(c) What register must be configured for the Timer0 peripheral to generate interrupt
signals? Which bit(s) must be set?

(d) What register must be configured for Timer0 to run continuously (when it is
enabled)? Which bit(s) must be set?

4. Consider the statement which maps TCSR0 to a memory-mapped register:
#define TCSR0 *((volatile unsigned long *)(XPAR_TIMER0_BASEADDR + 0x00))

(a) What is the effect of the volatile keyword?
(b) What is the effect of the typecast (volatile unsigned long *) ?
(c) What is the effect of the outer * operand?

5. In this exercise, you will derive timing properties used to generate audio.

4.1. GENERATE TONES IN MICROBLAZE 100

CHAPTER 4. PROGRAMMING EMBEDDED SYSTEMS

(a) An audio tone can be generated by toggling a digital pin at a fixed frequency.
This is equivalent to a PWM signal with 50% duty cycle at this frequency – that
is, half the time the digital pin is high, the other half, low. If you use a timed
interrupt to toggle the pin, and you wish to generate a 440Hz square wave, at
what frequency must your interrupt execute?

(b) The MicroBlaze processor clock executes at 50MHz. What is the period of
your timed interrupt, in units of processor cycles? Can you exactly generate the
desired tone?

6. In this exercise, you will evaluate a circuit for powering a speaker from myRIO.

(a) What is the typical high output voltage of a digital IO line on myRIO?
(b) If a small speaker is modeled as an 8Ω resistor and connected to a unlimited

current power supply with the same output voltage you found in 6a, what current
will be drawn?

(c) What is the maximum current output of a digital IO line (“sourcing current”)
on myRIO? Will an 8Ω speaker draw more current than this when connected
between a digital IO line and ground?

(d) If the 8Ω speaker is placed in series with a 1kΩ resistor and connected between
a digital IO line and ground on myRIO, will the current increase or decrease?
Will this meet the electrical specifications of myRIO?

4.1. GENERATE TONES IN MICROBLAZE 101

CHAPTER 4. PROGRAMMING EMBEDDED SYSTEMS

4.1.3 Lab Exercises

The following exercises reference files are distributed with this courseware. Once
downloaded and extracted, navigate to the folder

src\XilinxSDK\TimedIO

to locate files referenced by these exercises.

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments NI-RIO 13.1
• National Instruments myRIO 1900 or 1950
• DC power supply
• USB cable
• Xilinx SDK 14.4
• Xilinx Platform Cable USB II
• SparkFun Electronics COM-09151 Speaker - 0.5W 8Ω

• 1kΩ 0.5W resistor

1. Setup myRIO: Ensure myRIO is powered and connected to your computer. See
Lab 3.1: Connect to and Configure myRIO for instructions if you have not done this
before.Program MicroBlaze on the FPGA by using RIO Device Setup. The MicroBlaze
FPGA fixed-personality is located at

XilinxSDK\MicroBlaze_myRIO.lvbitx

See Lab 3.2: Program MicroBlaze from Xilinx SDK for instructions if you have not
done this before. When the MicroBlaze fixed personality is running, myRIO LED0
will glow on and off.

Connect the USB port of the Xilinx Platform Cable to your desktop, and the JTAG
cables to the digital I/O pins shown in Table A.1. When properly connected, the
Status light on the Platform Cable will illuminate green.

4.1. GENERATE TONES IN MICROBLAZE 102

CHAPTER 4. PROGRAMMING EMBEDDED SYSTEMS

Connect the resistor between myRIO MXP Connector B DIO8 on myRIO and the
positive terminal of the speaker. Connect the negative terminal of the speaker to a
myRIO ground. The resistor is a current-limiting resistor and ensures the sourcing
current of the DIO line is not exceeded.

2. Launch Xilinx SDK: Open Xilinx SDK, import the MicroBlaze specification

src\XilinxSDK\microblazeSpec\myRIO.zip

Import the lab template timedIO.zip, right-click on the imported project to select the
board support package, clean all projects, and build all projects. Use the XMD Console
to stop and reset the MicroBlaze processor. See Lab 3.2: Program MicroBlaze from
Xilinx SDK for instructions if you have not done this before.

Open the file timedIO.c. This is the only file you need to modify to complete this lab.
If the program compiles and downloads successfully, you should see console output
appear at the bottom of the Project Explorer view. The template code will compile
and download to the target without modification, but its functionality is incomplete.

Be sure to use the XMD Console to stop and reset the MicroBlaze processor on your
target between executions of your application.

3. Configure a Periodic Timed Interrupt: You will generate a 440Hz (fourth octave
A) note by generating a square wave of this frequency1. Configure a timed interrupt
to generate this tone. The body of the corresponding ISR should consist only of a
firing counter (useful for debugging), toggling of a DIO line, and acknowledgement of
the interrupt. Hint: Interrupt enable masks are defined at the top of timedIO.c.

(a) Provide the content your of your main program loop and interrupt service
routine.

4. Starve the Processor: Increasing the frequency of a timed interrupt leaves less
time for the processor to attend to other tasks. In steps, increase the frequency of
your timed interrupt until the system exhibits erratic behavior (as seen through your
debugger) or becomes unresponsive.

(a) At what frequency does MicroBlaze exhibit erratic behavior or become unrespon-
sive? What behavior did you observe?

1A square wave is characterized by its fundamental frequency, but it contains an infinite number of
harmonics. A real system (such as a speaker) will attenuate high-order harmonics.

4.1. GENERATE TONES IN MICROBLAZE 103

CHAPTER 4. PROGRAMMING EMBEDDED SYSTEMS

5. Share your Feedback: what did you like about this lab, and what would you
change?

4.1. GENERATE TONES IN MICROBLAZE 104

CHAPTER 4. PROGRAMMING EMBEDDED SYSTEMS

4.1.4 Troubleshooting

Refer to Lab 3.2: Program MicroBlaze from Xilinx SDK §3.2.4 (Troubleshooting) for
troubleshooting issues in the Xilinx SDK.

4.1. GENERATE TONES IN MICROBLAZE 105

CHAPTER 4. PROGRAMMING EMBEDDED SYSTEMS

4.2 Program an ADC in MicroBlaze

Contributing Author: Trung N. Tran

This lab focuses on programming an ADC on myRIO. The goal is to write C code to
configure a timed interrupt for periodic sampling of an analog input.

This lab builds on Lab 4.1: Generate Tones in MicroBlaze.

4.2. PROGRAM AN ADC IN MICROBLAZE 106

CHAPTER 4. PROGRAMMING EMBEDDED SYSTEMS

4.2.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• §1.3.6 (Memory-Mapped Register Interface to the Accelerometer ADC)

4.2. PROGRAM AN ADC IN MICROBLAZE 107

CHAPTER 4. PROGRAMMING EMBEDDED SYSTEMS

4.2.2 Prelab Exercises

1. In this exercise, you will explore the memory-mapped register interface to the
accelerometer ADC on myRIO.

(a) Which register enables ADC interrupts to be generated?
(b) Which register should be written to by an ISR to clear the ADC interrupt

status?
(c) Which register holds the result of an ADC conversion?
(d) Write a single C statement to begin an ADC conversion on channel 2.
(e) Write a single C statement to block until an ADC conversion is complete.
(f) Write a single C statement to read the result of an ADC conversion into the

variable valueRead, and another statement to read the index of the channel
associated with the conversion into channelRead.

2. One way to read from an ADC is to use a loop in the main() function to trigger
an ADC conversion, wait for completion, read its result, and print the result to the
screen.

(a) Is this concurrent or sequential software?

(b) Are processor resources well-utilized by this method?

(c) Is timing explicit in this method? In what ways could you attempt to achieve a
fixed sampling rate?

3. A second way to read from an ADC is to use timed interrupts. A periodic timer
ISR triggers an ADC conversion, waits for completion, and stores its result in a global
variable. The main() program loop is tasked with printing the result to the screen.

(a) Is this concurrent or sequential software?

(b) Are processor resources well-utilized by this method?

(c) Is timing explicit in this method? In what ways could you attempt to achieve a
fixed sampling rate?

4. A third way to read from an ADC is to use timed interrupts and ADC interrupts. A
periodic timer ISR triggers an ADC conversion and returns. When the ADC conversion
is complete, an ADC interrupt ISR reads the result and returns. The main() program
loop is tasked with printing the result to the screen.

4.2. PROGRAM AN ADC IN MICROBLAZE 108

CHAPTER 4. PROGRAMMING EMBEDDED SYSTEMS

(a) Is this concurrent or sequential software?

(b) Are processor resources well-utilized by this method?

(c) Is timing explicit in this method? In what ways could you attempt to achieve a
fixed sampling rate?

5. What are some of the major differences between using polling and using interrupts
to read from an ADC?

4.2. PROGRAM AN ADC IN MICROBLAZE 109

CHAPTER 4. PROGRAMMING EMBEDDED SYSTEMS

4.2.3 Lab Exercises

For the exercises below, begin with the solution you developed for Lab 4.1: Generate
Tones in MicroBlaze.

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments NI-RIO 13.1
• National Instruments myRIO 1900 or 1950
• DC power supply
• USB cable
• Xilinx SDK 14.4
• Xilinx Platform Cable USB II
• SparkFun Electronics COM-09151 Speaker - 0.5W 8Ω

• 1kΩ 0.5W resistor

1. Setup myRIO: Ensure myRIO is powered and connected to your computer. See
Lab 3.1: Connect to and Configure myRIO for instructions if you have not done this
before.Program MicroBlaze on the FPGA by using RIO Device Setup. The MicroBlaze
FPGA fixed-personality is located at

XilinxSDK\MicroBlaze_myRIO.lvbitx

See Lab 3.2: Program MicroBlaze from Xilinx SDK for instructions if you have not
done this before. When the MicroBlaze fixed personality is running, myRIO LED0
will glow on and off.

Connect the USB port of the Xilinx Platform Cable to your desktop, and the JTAG
cables to the digital I/O pins shown in Table A.1. When properly connected, the
Status light on the Platform Cable will illuminate green.

2. Launch Xilinx SDK: Open Xilinx SDK and open the same workspace you used
for Lab 4.1: Generate Tones in MicroBlaze. Clean all projects, and build all projects.
See Lab 3.2: Program MicroBlaze from Xilinx SDK for instructions if you have not
done this before.

Open the file timedIO.c. This is the only file you need to modify to complete this lab.

4.2. PROGRAM AN ADC IN MICROBLAZE 110

CHAPTER 4. PROGRAMMING EMBEDDED SYSTEMS

3. Poll the ADC: Configure the main() program loop to continuously poll the ADC
and display the results to the debug console. You should not configure any interrupts
for this exercise.

Hint: Remember to execute at least four asm("nop") instructions between writing and
then reading the same memory-mapped register.

(a) Provide the content your main() program loop.
(b) When configuring the ADC and main() program loop, were there any steps

that set the rate at which the ADC is polled, or does your code run as fast as
possible?

4. Use Timed Interrupts to Poll the ADC: Configure a timed interrupt to poll the
ADC every 5 milliseconds. You should not poll the ADC in the main() program
loop, but instead in a timed interrupt. Leave all print() statements in the main
program loop.

(a) Provide the content of main() that configures the timer ISR, as well as the
body of the ISR routine.

5. Use ADC and Timed Interrupts to Read the ADC: Configure a timed interrupt to
trigger an ADC conversion every 5 milliseconds and the ADC to generate an interrupt
when a conversion is complete. You should read the ADC conversion result in the
ADC conversion complete interrupt service routine, and not in the main() function
or timer interrupt service routine.

(a) Provide the content your main() function needed to configure the timer and ADC
ISRs, as well as the content of the timer and ADC ISRs.

6. Share your Feedback: what did you like about this lab, and what would you
change?

4.2. PROGRAM AN ADC IN MICROBLAZE 111

CHAPTER 4. PROGRAMMING EMBEDDED SYSTEMS

4.2.4 Troubleshooting

Refer to Lab 3.2: Program MicroBlaze from Xilinx SDK §3.2.4 (Troubleshooting) for
troubleshooting issues in the Xilinx SDK.

4.2. PROGRAM AN ADC IN MICROBLAZE 112

5
The Cal Climber: CPS Design

with the iRobot Create

Cyber-physical systems continue to grow in prevalence and complexity, and their
designers face the challenge of managing constraints across multiple knowledge domains
such as software, transducers, signal processing, communication and networking,
computer architecture, controls, simulation, and modeling of physical processes.

A cyber-physical system is perhaps best characterized by the coupling of its physical
processes and embedded computations. Design of these systems requires understanding
of these joint dynamics, which is the focus of this chapter and the next one.

This chapter describes a sequence of lab exercises to program the Cal Climber, a
version of the iRobot Create interfaced to the NI myRIO, to climb a “hill”.

113

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.1 Navigation Design Requirements

The following are the design requirements for navigation laboratory exercises.

1. Startup: When powered on or reset, the robot shall not move until the ‘Play’
button is pressed.

2. Run: The robot shall begin movement the first time the ‘Play’ button is pressed
and continue running until paused or stopped.

(a) Ground Orientation: The ground orientation of your robot is the direction
the front of the robot is pointing when it first runs. The ground orientation
does not change after subsequent pausing/resuming; only after a power
cycle, reprogram or restart of the robot or its embedded controller.

(b) Drive: Your robot shall maintain ground orientation and drive forward
while on level ground and clear of obstacles.

(c) Obstacle Avoidance: Your robot shall avoid obstacles.
i. Cliff Avoidance: Your robot shall not fall off of cliffs or edges.

ii. Wheel Hazard Avoidance: Your robot shall avoid one or more wheels
losing contact with the ground. If a wheel loses contact with the
ground, your robot shall attempt to recover and move around the
incident hazard.

iii. Object Avoidance: Your robot shall avoid objects in its path. It is
acceptable for your robot to touch objects as long as it immediately
changes course in an attempt to avoid.

iv. Avoidance Robustness: Obstacle avoidance must always be satisfied,
even if multiple obstacles are encountered simultaneously or in short
succession.

v. Reorientaton: After avoiding an obstacle, your robot shall eventually
reorient to ground orientation.

3. Pause/Resume: The ‘Play’ button on the top of the robot shall start/resume
or pause movement of the robot. At any point the robot is moving, the ‘Play’
button shall cause it to immediately and completely stop. Subsequently pressing
the ‘Play’ button shall cause the robot to resume operation.

4. E-Stop: The ‘Advance’ button on the top of the robot shall immediately stop all
movement of the robot and terminate execution of its controller. The robot shall
not move again until it is power cycled, or its embedded controller reprogrammed
or reset.

5.1. NAVIGATION DESIGN REQUIREMENTS 114

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5. Performance: When moving, your robot must satisfy the following performance
characteristics.

(a) Turnabout: Your robot shall never rotate in place more than 180○.
(b) Chattering: Your robot shall not move erratically or exhibit chattering.
(c) Abnormal Termination: Your robot shall not abnormally terminate execu-

tion, with the exception of power or mechanical failure.
(d) Obstacle Hugging: Your robot shall not repeatedly encounter (‘hug’) an

obstacle for the purpose of navigation.
(e) Timeliness: Your robot shall achieve its goals in a timely manner.

Hint: Your robot does not need to follow a specific path or trajectory, or return to
a specific path or trajectory following obstacle avoidance – it need only eventually
return to and maintain its original ground orientation.

5.2 Hill Climb Design Requirements

The following are the design requirements for the Hill Climb laboratory exercises.
These requirements are in addition to the above navigation requirements.

1. Hill Climb: When an incline is encountered, your robot shall drive uphill
towards the top of the incline.

2. Hill Descend: When the top of an incline is reached, as indicated by cliffs or
impassible obstacles at the top of the incline, your robot shall drive downhill
towards the bottom of the incline.

3. Ground Stop: After climbing and descending, when the bottom of an incline
is reached, your robot shall stop and terminate execution – its final goal is
achieved.

5.2. HILL CLIMB DESIGN REQUIREMENTS 115

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.3 Program CyberSim from Visual Studio

These laboratory exercises serve as a tutorial on programming the CyberSim simulator
using C and Microsoft Visual Studio. You will load a template project and verify your
application is loaded by the simulator.

There are no prerequisites for this lab.

Figure 5.1: Microsoft Visual Studio.

5.3. PROGRAM CYBERSIM FROM VISUAL STUDIO 116

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.3.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• §1.7 (Equipment: Microsoft Visual Studio)
• §1.10 (Equipment: CyberSim)

5.3. PROGRAM CYBERSIM FROM VISUAL STUDIO 117

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.3.2 Prelab Exercises

There are no prelab exercises for this lab.

5.3. PROGRAM CYBERSIM FROM VISUAL STUDIO 118

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.3.3 Lab Exercises

The following exercises reference files are distributed with this courseware. Once
downloaded and extracted, navigate to the folder

src\C Statechart

to locate files referenced by these exercises.

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• Microsoft Visual Studio, one of the following:

– Visual Studio Express 2013 for Desktop (Windows 7 and Windows 8)
– Visual C++ Express 2010 (Windows XP SP3 and Windows Vista)

• National Instruments LabVIEW Run-Time Engine 2014

1. Launch Visual Studio Express: From the Windows Start Menu, launch Visual
Studio Express. Depending on your version, the Start Menu shortcut may be named
VS Studio Express 2013 for Desktop or Visual C++ Express .

2. Load the Template C Statechart: The C Statechart source code and build settings
are maintained by a Visual Studio Solution. From the top menu bar, select “File→Open
Project...” and navigate to the downloaded exercises,

src\C Statechart\libstatechart Visual Studio Solution\libstatechart.sln

The solution references all source files needed to compile a statechart DLL for use
with CyberSim.

3. Review the Statechart source: The Solution Explorer pane is used to navigate files
in a solution. Open the source file C Statechart\irobotNavigationStatechart.c, the only
file you need to modify to change the controller behavior in CyberSim.

4. Compile: From the top menu bar, select “Build→Build Solution” to compile the
solution. The output directory is automatically set to the CyberSim program folder.
Ensure there are no errors in the error list, and following a successful build, check

5.3. PROGRAM CYBERSIM FROM VISUAL STUDIO 119

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

that the output library was written to the CyberSim binary folder in the downloaded
exercise files:

CyberSim\libstatechart.dll

5. Launch CyberSim and Simulate: Open CyberSim from the downloaded exercise
files:

CyberSim\CyberSim.exe

Open the Configuration tab and in the “statechart” path field, enter libstatechart.dll.
Press

�� ��Start to begin a simulation. The simulation will progress, executing your
controller at each simulation step.

6. Stop the Simulation: Before you can change and recompile your controller, you
must stop the simulation to unload libstatechart.dll. Press the

�� ��Stop button to stop the
simulation. You do not need to exit CyberSim.

7. Launch a Debug Session (optional): Visual Studio can attach a debugger to
CyberSim to allow you to debug your control software. Visual Studio will launch
CyberSim automatically, using a command-line argument to point the simulator to the
compiled library. Close all other instances of CyberSim before beginning a debug
session.

In Visual Studio, from the top menu car select “Debug→Start Debugging”. The
solution should build and launch CyberSim. Press

�� ��Start to begin a simulation. The
debugger will attach when the simulation begins. You may use debugging features
such as watch windows and breakpoints to step through your code.

When you are ready to terminate a debugging session, disable all breakpoints and
from the Visual Studio top menu bar select “Debug→Continue” to allow CyberSim
to continue executing uninterrupted. Return to CyberSim and press

�� ��Exit to close
CyberSim, detatch the Visual Studio Debugger, and close the debugging session.

8. Close CyberSim Use the
�� ��Exit button to terminate CyberSim – do not close the

window, as this will terminate CyberSim without unloading your statechart library or
the ODE simulator.

Congratulations on using Visual Studio to write a controller for CyberSim!

5.3. PROGRAM CYBERSIM FROM VISUAL STUDIO 120

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

9. Share your Feedback: what did you like about this lab, and what would you
change?

5.3. PROGRAM CYBERSIM FROM VISUAL STUDIO 121

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.4 Navigation in C (Simulation)

These exercises guide you in creating a state machine in C using Microsoft Visual
Studio. Your state machine will read sensors and drive the iRobot Create with a basic
sense of orientation while avoiding obstacles in a simulated environment.

This lab builds on Lab 5.3: Program CyberSim from Visual Studio.

5.4. NAVIGATION IN C (SIMULATION) 122

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.4.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• Introduction to Embedded Systems L (Lee and Seshia, 2015)
– Chapter 3: Discrete Dynamics §3.3 (Finite-State Machines) L

Skim these documents to understand their content and layout. You should be able to
quickly find relevant information within them. Sections pertaining to key topics may
be explicitly referenced, but you may need to reference other sections to complete
these exercises.

• Create Owner’s Guide L (iRobot, 2006b)
• Create Open Interface Specification L (iRobot, 2006a)

5.4. NAVIGATION IN C (SIMULATION) 123

http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/iRobot_06_CreateOwnersGuide.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/iRobot_06_CreateOpenInterfaceSpecification.pdf

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.4.2 Prelab Exercises

1. §1.4.3 (iRobot Create Equipment Exercises) (all exercises). You may skip these if
you have already completed them for another laboratory in this chapter.

2. Review the template project provided for the lab exercises. The template code
implements a state machine; sketch it.

5.4. NAVIGATION IN C (SIMULATION) 124

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.4.3 Lab Exercises

For the exercises below, begin with the same source files you used in Lab 5.3: Program
CyberSim from Visual Studio, located in the downloaded exercise files:

src\C Statechart\

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• Microsoft Visual Studio, one of the following:

– Visual Studio Express 2013 for Desktop (Windows 7 and Windows 8)
– Visual C++ Express 2010 (Windows XP SP3 and Windows Vista)

• National Instruments LabVIEW Run-Time Engine 2014

1. Launch Visual Studio Express: Open Microsoft Visual Studio Express for Desktop
and import the solution libstatchart.sln. Clean and build the solution. The compiled
library is written to the CyberSim folder.

2. Execute the Template Code: Launch CyberSim.exe . In the Configuration tab,
browse for “Statechart” and select libstatechart.dll. Press

�� ��Start to begin a simulation.

3. Run a Debug Sequence: In the Configuration tab, select feedback mode “Debug
Navigation” and press

�� ��Debug to run through a sequence of tests that may catch
common errors or bugs as you build your solution.

4. Navigate in Simulation: Program the virtual robot. Program the robot to avoid
obstacles and maintain a basic sense of orientation. You must satisfy all design
requirements as specified in §5.1 (Navigation Design Requirements).

(a) Describe (and sketch) your obstacle avoidance algorithm.
(b) Did you follow a state machine architecture? If so, which states did you add to

the default project?

5. Share your Feedback: what did you like about this lab, and what would you
change?

5.4. NAVIGATION IN C (SIMULATION) 125

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.5 Navigation in C (Deployment)

These exercises guide you in creating a state machine in C using C & C++ Development
Tools for NI Linux Real-Time, Eclipse Edition and myRIO. Your state machine will
read sensors and drive the iRobot Create with a basic sense of orientation while
avoiding obstacles.

This lab builds on Lab 3.3: Program the myRIO Processor from Eclipse and Lab 5.4:
Navigation in C (Simulation).

5.5. NAVIGATION IN C (DEPLOYMENT) 126

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.5.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• Introduction to Embedded Systems L (Lee and Seshia, 2015)
– Chapter 8: Embedded Processors “Circular Buffers” sidebar p.220 L

– Chapter 10: Input and Output §10.1.3 (Serial Interfaces) L

5.5. NAVIGATION IN C (DEPLOYMENT) 127

http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.5.2 Prelab Exercises

1. Review the template project provided for the lab exercises.

(a) Does the template code use polling or interrupts to read the iRobot sensors?
(b) A software driver for a communication peripheral uses the xqueue data type.

What is this data type, and for which peripheral is it used?
(c) The xqueue data type encapsulates a buffer whose size must be a power of two.

What is the benefit of such a constraint?

5.5. NAVIGATION IN C (DEPLOYMENT) 128

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.5.3 Lab Exercises

The following exercises reference files are distributed with this courseware. Once
downloaded and extracted, navigate to the folder

src\C Statechart

to locate files referenced by these exercises.

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments NI-RIO 13.1
• National Instruments myRIO 1900 or 1950
• DC power supply
• USB cable
• C & C++ Development Tools for NI Linux Real-Time, Eclipse Edition
• iRobot Create

1. Setup myRIO: Ensure myRIO is powered and connected to your computer. See
Lab 3.1: Connect to and Configure myRIO for instructions if you have not done this
before.

2. Verify the Robot Setup: Your iRobot Create is interfaced with a myRIO. Verify
the components are correctly wired, as shown in Fig. A.2.

3. Launch Eclipse: Open C & C++ Development Tools for NI Linux Real-Time,
Eclipse Edition and import the project archive irobotNavigation.zip. Double-check that
the MyRio_1950 symbol is set and that the target has been correctly configured. Clean
and build all projects. Create a target connection, connect to the target, and launch
the Target Console. Create a run configuration for the irobotNavigation project. See
Lab 3.3: Program the myRIO Processor from Eclipse for instructions if you have not
done this before.

4. Execute the Template Code: Launch the run configuration and observe the mes-
sages printed to the Target Console. Place your robot in a clear space and press the
‘Play’ button on the top of the robot to toggle between pause and execute modes.

5.5. NAVIGATION IN C (DEPLOYMENT) 129

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

Hint: The easiest way to revise code and restart your process is for the original
process to complete. The template code in your project is designed to finish execution
when the ‘Advance’ button is pressed on the iRobot. When finished executing, press
the ‘Advance’ button on the top of the robot to terminate the process. If you attempt
to launch a new process before the old process terminates, you may receive an error
that the executable could not be downloaded to the target.

5. Navigate the iRobot: Program the real robot. Program the robot to avoid obstacles
and maintain a basic sense of orientation. You must satisfy all design requirements as
specified in the previous lab §5.1 (Navigation Design Requirements).

(a) Describe (and sketch) your obstacle avoidance algorithm.
(b) Did you follow a state machine architecture? If so, which states did you add to

the default project?

6. Share your Feedback: what did you like about this lab, and what would you
change?

5.5. NAVIGATION IN C (DEPLOYMENT) 130

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.5.4 Troubleshooting

Refer to §3.3.4 (Troubleshooting) for troubleshooting issues with Eclipse for NI
Real-Time Linux Targets.

5.5. NAVIGATION IN C (DEPLOYMENT) 131

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.6 Hill Climb in C (Simulation)

This lab builds on programming cyber-physical systems, specifically feedback-control.
Using Microsoft Visual Studio Express, you will implement a state machine in C that
instructs the iRobot Create to navigate to the top of an incline while avoiding cliffs
and obstacles in a simulated environment.

This lab builds on Lab 5.4: Navigation in C (Simulation).

5.6. HILL CLIMB IN C (SIMULATION) 132

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.6.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• §1.6.1 (Introduction to the myRIO Accelerometer)
• Introduction to Embedded Systems L (Lee and Seshia, 2015)

– Chapter 7: Sensors and Actuators §7.1 (Models of Sensors and Actuators) L

– Chapter 7: Sensors and Actuators §7.2.1 (Measuring Tilt and Acceleration) L

Skim these documents to understand their content and layout. You should be able to
quickly find relevant information within them. Sections pertaining to key topics may
be explicitly referenced, but you may need to reference other sections to complete
these exercises.

• Create Owner’s Guide L (iRobot, 2006b)
• Create Open Interface Specification L (iRobot, 2006a)

These documents go beyond the scope of the core concepts of these exercises, and
are provided as additional resources.

• Using an Accelerometer for Inclination Sensing L (Fisher, 2010)
• Implementing a Tilt-Compensated eCompass using Accelerometer and Magne-

tometer Sensors L (Ozyagcilar, 2011)
• Computational Principles of Mobile Robotics (Dudek and Jenkin, 2000)

5.6. HILL CLIMB IN C (SIMULATION) 133

http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/iRobot_06_CreateOwnersGuide.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/iRobot_06_CreateOpenInterfaceSpecification.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Fisher_10_UsingAnAccelerometerForInclinationSensing.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Ozyagcilar_11_ImplementingCompass.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Ozyagcilar_11_ImplementingCompass.pdf

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.6.2 Prelab Exercises

1. §1.6.3 (MyRIO Accelerometer Exercises) (all exercises). You may skip these if
you have already completed them for another laboratory in this chapter.

5.6. HILL CLIMB IN C (SIMULATION) 134

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.6.3 Lab Exercises

For the exercises below, begin with the solution you developed for Lab 5.4: Navigation
in C (Simulation), located in the downloaded exercise files:

src\C Statechart\

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• Microsoft Visual Studio, one of the following:

– Visual Studio Express 2013 for Desktop (Windows 7 and Windows 8)
– Visual C++ Express 2010 (Windows XP SP3 and Windows Vista)

• National Instruments LabVIEW Run-Time Engine 2014

1. Hill Climb in Simulation: Program the virtual robot. Using feedback from the
accelerometer, your robot should differentiate between an incline and level ground,
and when on an incline, orient and drive towards the top. You must satisfy all design
requirements as specified in §5.2 (Hill Climb Design Requirements).

(a) Describe (and sketch) your climbing algorithm.
(b) Did you follow a state machine architecture? If so, which states did you add?
(c) How did you account for movement of the robot when reading from the

accelerometer? Describe any algorithms or filters used.

2. Share your Feedback: what did you like about this lab, and what would you
change?

5.6. HILL CLIMB IN C (SIMULATION) 135

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.7 Hill Climb in C (Deployment)

This lab builds on programming cyber-physical systems, specifically feedback-control.
Using C & C++ Development Tools for NI Linux Real-Time, Eclipse Edition, you
will implement a state machine in C on myRIO that instructs the iRobot Create to
navigate to the top of an incline while avoiding cliffs and obstacles.

This lab builds on Lab 5.5: Navigation in C (Deployment) and Lab 5.6: Hill Climb
in C (Simulation).

5.7. HILL CLIMB IN C (DEPLOYMENT) 136

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.7.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• §1.6.1 (Introduction to the myRIO Accelerometer)
• Introduction to Embedded Systems L (Lee and Seshia, 2015)

– Chapter 7: Sensors and Actuators §7.1 (Models of Sensors and Actuators) L

– Chapter 7: Sensors and Actuators §7.2.1 (Measuring Tilt and Acceleration) L

Skim these documents to understand their content and layout. You should be able to
quickly find relevant information within them. Sections pertaining to key topics may
be explicitly referenced, but you may need to reference other sections to complete
these exercises.

• Create Owner’s Guide L (iRobot, 2006b)
• Create Open Interface Specification L (iRobot, 2006a)

These documents go beyond the scope of the core concepts of these exercises, and
are provided as additional resources.

• Using an Accelerometer for Inclination Sensing L (Fisher, 2010)
• Implementing a Tilt-Compensated eCompass using Accelerometer and Magne-

tometer Sensors L (Ozyagcilar, 2011)
• Computational Principles of Mobile Robotics (Dudek and Jenkin, 2000)

5.7. HILL CLIMB IN C (DEPLOYMENT) 137

http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/iRobot_06_CreateOwnersGuide.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/iRobot_06_CreateOpenInterfaceSpecification.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Fisher_10_UsingAnAccelerometerForInclinationSensing.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Ozyagcilar_11_ImplementingCompass.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Ozyagcilar_11_ImplementingCompass.pdf

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.7.2 Prelab Exercises

1. §1.6.3 (MyRIO Accelerometer Exercises) (all exercises). You may skip these if
you have already completed them for another laboratory in this chapter.

5.7. HILL CLIMB IN C (DEPLOYMENT) 138

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.7.3 Lab Exercises

For the exercises below, begin with the solution you developed for Lab 5.6: Hill
Climb in C (Simulation), located in the downloaded exercise files:

src\C Statechart\

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments NI-RIO 13.1
• National Instruments myRIO 1900 or 1950
• DC power supply
• USB cable
• C & C++ Development Tools for NI Linux Real-Time, Eclipse Edition
• iRobot Create

1. Hill Climb on iRobot: Program the real robot. Using feedback from the accelerom-
eter, your robot should differentiate between an incline and level ground, and when on
an incline, orient and drive towards the top. You must satisfy all design requirements
as specified in §5.2 (Hill Climb Design Requirements).

(a) Describe (and sketch) your climbing algorithm.
(b) Did you follow a state machine architecture? If so, which states did you add?
(c) How did you account for movement of the robot when reading from the

accelerometer? Describe any algorithms or filters used.

2. Share your Feedback: what did you like about this lab, and what would you
change?

5.7. HILL CLIMB IN C (DEPLOYMENT) 139

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.7.4 Troubleshooting

Refer to §3.3.4 (Troubleshooting) for troubleshooting issues with Eclipse.

5.7. HILL CLIMB IN C (DEPLOYMENT) 140

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.8 Program CyberSim from LabVIEW

These laboratory exercises serve as a tutorial on programming the CyberSim simulator
using Statecharts and LabVIEW. You will load a template project and verify your
application is loaded by the simulator.

There are no prerequisites for this lab.

5.8. PROGRAM CYBERSIM FROM LABVIEW 141

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.8.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• §1.9 (Equipment: LabVIEW)
• §1.10 (Equipment: CyberSim)

5.8. PROGRAM CYBERSIM FROM LABVIEW 142

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.8.2 Prelab Exercises

There are no prelab exercises for this lab.

5.8. PROGRAM CYBERSIM FROM LABVIEW 143

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.8.3 Lab Exercises

The following exercises reference files are distributed with this courseware. Once
downloaded and extracted, navigate to the folder

src\LabVIEW\statechart

to locate files referenced by these exercises.

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments LabVIEW 2014
• National Instruments LabVIEW Statecharts Module 2014

1. Launch LabVIEW: From the Windows Start Menu, open National Instruments
LabVIEW.

2. Load the Template LabVIEW Statechart: The LabVIEW Statechart source code
and build settings are maintained by a LabVIEW Project. From the top menu bar,
select “File→Open Project...” and navigate to the downloaded exercises,

src\LabVIEW\Statechart.lvproj

The project references all source files needed to create a LabVIEW Statechart for use
with CyberSim.

3. Review the Statechart source: The Project Explorer pane is used to navigate files.
Open the source file Statechart.lvsc\Diagram.vi, the only file you need to modify to
change the controller behavior in CyberSim.

4. Recompile the Statechart: Press the “Force Code Generation for this Statechart”
button to recompile the Statechart for myRIO.

5. Verify the Statechart is Executable: The LabVIEW Statechart file Statechart.lvsc
is called from a wrapper VI, Simulation Statechart.vi. Open this VI from the Project
Explorer and ensure the Run arrow is solid white – if a broken gray arrow is shown
instead, press the broken arrow to open the errors dialog.

5.8. PROGRAM CYBERSIM FROM LABVIEW 144

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

Save Simulation Statechart.vi after recompiling the Statechart.

6. Launch CyberSim and Simulate: Open CyberSim from the downloaded exercise
files:

CyberSim\CyberSim.exe

Open the Configuration tab and in the “statechart” path field, enter

..\src\LabVIEW\statechart\Simulation Statechart.vi

Press
�� ��Start to begin a simulation. The simulation will progress, executing your

controller at each simulation step. You will see your Statechart executing in the
Statechart Display tab.

7. Stop the Simulation: Before you can change and recompile your controller, you
must stop the simulation to unload Statechart.lvsc. Press the

�� ��Stop button to stop the
simulation. You do not need to exit CyberSim.

8. Close CyberSim Use the
�� ��Exit button to terminate CyberSim – do not close the

window, as this will terminate CyberSim without unloading your statechart or the
ODE simulator.

Congratulations on using Visual Studio to write a controller for CyberSim!

9. Share your Feedback: what did you like about this lab, and what would you
change?

5.8. PROGRAM CYBERSIM FROM LABVIEW 145

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.9 Navigation in Statecharts (Simulation)

You will design a control algorithm using the Statecharts model of computation. Your
task is to design a Statechart that instructs the robot to maintain a basic sense of
orientation while avoiding obstacles in a virtual world.

This lab builds on Lab 5.8: Program CyberSim from LabVIEW.

5.9. NAVIGATION IN STATECHARTS (SIMULATION) 146

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.9.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• §1.4 (Equipment: iRobot Create)
• §1.10.1 (Introduction to CyberSim)
• Introduction to Embedded Systems L (Lee and Seshia, 2015)

– Chapter 3: Discrete Dynamics §3.3 (Finite-State Machines) L

– Chapter 5: Composition of State Machines L

• Designing Applications with the NI LabVIEW Statechart Module4 (Washington,
2009)

• Developing Applications with the NI LabVIEW Statechart Module L (National
Instruments, 2012b)

Skim these documents to understand their content and layout. You should be able to
quickly find relevant information within them. Sections pertaining to key topics may
be explicitly referenced, but you may need to reference other sections to complete
these exercises.

• Create Owner’s Guide L (iRobot, 2006b)
• Create Open Interface Specification L (iRobot, 2006a)
• LabVIEW Statechart Module Help4 (National Instruments, 2012d)

5.9. NAVIGATION IN STATECHARTS (SIMULATION) 147

http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://www.ni.com/webcast/225/en/
http://LeeSeshia.org/lab/releases/1.70/documents/NationalInstruments_12_DevelopingApplicationsWithNILabVIEWStatechartModule.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/iRobot_06_CreateOwnersGuide.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/iRobot_06_CreateOpenInterfaceSpecification.pdf
http://zone.ni.com/reference/en-XX/help/372103D-01/

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.9.2 Prelab Exercises

1. §1.4.3 (iRobot Create Equipment Exercises) (all exercises). You may skip these if
you have already completed them for another laboratory in this chapter.

2. How does the Statecharts model of computation differ from finite state machines?

3. In a Statechart, what is the difference between a state and a region?

4. In LabVIEW Statecharts, what is represented by an arrow containing three open or
closed cells? What does each cell represent? What does this arrow connect?

5.9. NAVIGATION IN STATECHARTS (SIMULATION) 148

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.9.3 Lab Exercises

The following exercises reference files are distributed with this courseware. Once
downloaded and extracted, navigate to the folder

src\LabVIEW\statechart

to locate files referenced by these exercises.

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments LabVIEW 2014
• National Instruments LabVIEW Statecharts Module 2014

The LabVIEW Statecharts editor enables developers to program a in the Statecharts
model of computation. When when changing default value of a Statechart StateData
control, open the Statechart diagram and press the “Force Code Generation for this

Statechart” button to recompile the Statechart.

1. Open the Project: From the extracted project files, open the file Statechart.lvproj
(LabVIEW Project File). It may take a while to load the project. You may receive a
warning that dependencies were loaded from a new path; this is normal and may be
disregarded.

2. Execute the Template Code: Launch CyberSim.exe . In the Configuration tab,
browse for “Statechart” and select src\LabVIEW\statechart\Simulation Statechart.vi.
Press

�� ��Start to begin a simulation.

3. Run a Debug Sequence: In the Configuration tab, select feedback mode “Debug
Navigation” and press

�� ��Debug to run through a sequence of tests that may catch
common errors or bugs as you build your solution.

4. Navigate in Simulation: Program the virtual robot. Your code should reside
entirely in the Statechart – you do not need to modify the block diagram of Simulation
Statechart.vi.

5.9. NAVIGATION IN STATECHARTS (SIMULATION) 149

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

Program the robot to avoid obstacles and maintain a basic sense of orientation. You
must satisfy all design requirements as specified below in §5.1 (Navigation Design
Requirements).

(a) Provide a description and screenshot of your obstacle avoidance algorithm.

5. Share your Feedback: what did you like about this lab, and what would you
change?

5.9. NAVIGATION IN STATECHARTS (SIMULATION) 150

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.10 Navigation in Statecharts (Deployment)

You will design a control algorithm using the Statecharts model of computation on
myRIO, verify in simulation in the LabVIEW Robotics Simulator, and deploy the
solution to the iRobot Create. Your task is to design a Statechart that instructs the
robot to maintain a basic sense of orientation while avoiding obstacles.

This lab builds on Lab 3.4: Program the myRIO Processor from LabVIEW and Lab
5.9: Navigation in Statecharts (Simulation).

5.10. NAVIGATION IN STATECHARTS (DEPLOYMENT) 151

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.10.1 Prelab Reading

There is no prelab reading for this laboratory.

5.10. NAVIGATION IN STATECHARTS (DEPLOYMENT) 152

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.10.2 Prelab Exercises

There are no prelab exercises for this laboratory.

5.10. NAVIGATION IN STATECHARTS (DEPLOYMENT) 153

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.10.3 Lab Exercises

The following exercises reference files are distributed with this courseware. Once
downloaded and extracted, navigate to the folder

src\LabVIEW\statechart

to locate files referenced by these exercises.

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments LabVIEW 2014
• National Instruments LabVIEW for myRIO Module 2014
• National Instruments LabVIEW Real-Time Module 2014
• National Instruments NI-RIO 13.1
• National Instruments LabVIEW Statecharts Module 2014
• National Instruments myRIO 1900 or 1950
• DC power supply
• USB cable
• iRobot Create

1. Setup myRIO: Ensure myRIO is powered and connected to your computer. See
Lab 3.1: Connect to and Configure myRIO for instructions if you have not done this
before.

2. Verify the Robot Setup: Your iRobot Create is interfaced with a myRIO. Verify
the components are correctly wired, as shown in Fig. A.2.

3. Open the Project: From the extracted project files, open the file Statechart.lvproj
(LabVIEW Project File). It may take a while to load the project. You may receive a
warning that dependencies were loaded from a new path; this is normal and may be
disregarded.

4. Navigate the iRobot: Program the real robot. The Statechart you designed in
the simulator is configured to deploy on your embedded target. In the Project
Explorer, navigate to “myRIO→Statechart” and open Diagram.vi. Press the “Force
Code Generation for this Statechart” button to recompile the Statechart for myRIO.

5.10. NAVIGATION IN STATECHARTS (DEPLOYMENT) 154

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

Open Target.vi. This is the main VI for the myRIO and is responsible for sampling
the accelerometer, reading the iRobot sensors, and transmitting drive commands. You
code should reside entirely in the Statechart – you do not need to modify any others
VIs. A lowpass filter has been provided to smooth the accelerometer signal.

Run Target.vi to deploy your Statechart to your target.

Program the robot to avoid obstacles and maintain a basic sense of orientation. You
must satisfy all design requirements as specified in the previous lab §5.1 (Navigation
Design Requirements).

(a) Did your Statechart require modification to work on the physical target? If so,
what modifications did you make?

(b) How would you compare programming in Statecharts to programming in a
traditional programming language such as C?

5. Share your Feedback: what did you like about this lab, and what would you
change?

5.10. NAVIGATION IN STATECHARTS (DEPLOYMENT) 155

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.10.4 Troubleshooting

I receive the error “iRobot Navigation Target loaded with errors and was closed” when
attempting to run on target: This occurs when cached generated code becomes corrupt.
To resolve the issue, open the LabVIEW configuration file from the LabVIEW program
folder, <LabVIEW>\LabVIEW.ini . Under the [LabVIEW] section add the line

useCacheForDeployment=False

Save and restart LabVIEW.

Alternatively, you may resolve the issue by renaming your Statechart.

I receive the error “LabVIEW: Resource not found. An error occurred loading VI.”
This occurs the custom display element of a Statechart becomes corrupt. The custom
data display is not used by this lab and can be restored to resolve the issue. From the
downloaded project files, open

src\LabVIEW\statechart\Restore Corrupt Statechart\Restore Corrupt Statechart.vi

Follow the instructions on the VI to restore your Statechart.

5.10. NAVIGATION IN STATECHARTS (DEPLOYMENT) 156

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.11 Hill Climb in Statecharts (Simulation)

This lab builds on the concept of model-based design for cyber-physical systems and
focuses on feedback-control. Your goal in this lab is to implement a Statechart that
instructs the iRobot Create to navigate to the top of an incline while avoiding cliffs
and obstacles in a simulated environment.

This lab builds on Lab 5.9: Navigation in Statecharts (Simulation).

5.11. HILL CLIMB IN STATECHARTS (SIMULATION) 157

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.11.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• §1.6.1 (Introduction to the myRIO Accelerometer).
• Introduction to Embedded Systems L (Lee and Seshia, 2015)

– Chapter 7: Sensors and Actuators §7.1 (Models of Sensors and Actuators) L

– Chapter 7: Sensors and Actuators §7.2.1 (Measuring Tilt and Acceleration) L

Skim these documents to understand their content and layout. You should be able to
quickly find relevant information within them. Sections pertaining to key topics may
be explicitly referenced, but you may need to reference other sections to complete
these exercises.

• Create Owner’s Guide L (iRobot, 2006b)
• Create Open Interface Specification L (iRobot, 2006a)

These documents go beyond the scope of the core concepts of these exercises, and
are provided as additional resources.

• Using an Accelerometer for Inclination Sensing L (Fisher, 2010)
• Implementing a Tilt-Compensated eCompass using Accelerometer and Magne-

tometer Sensors L (Ozyagcilar, 2011)
• Computational Principles of Mobile Robotics (Dudek and Jenkin, 2000)

5.11. HILL CLIMB IN STATECHARTS (SIMULATION) 158

http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/iRobot_06_CreateOwnersGuide.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/iRobot_06_CreateOpenInterfaceSpecification.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Fisher_10_UsingAnAccelerometerForInclinationSensing.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Ozyagcilar_11_ImplementingCompass.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Ozyagcilar_11_ImplementingCompass.pdf

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.11.2 Prelab Exercises

1. §1.6.3 (MyRIO Accelerometer Exercises) (all exercises). You may skip these if
you have already completed them for another laboratory in this chapter.

5.11. HILL CLIMB IN STATECHARTS (SIMULATION) 159

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.11.3 Lab Exercises

For the exercises below, begin with the solution you developed for Lab 5.9: Navigation
in Statecharts (Simulation), located in the downloaded exercise files:

src\LabVIEW\statechart

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments LabVIEW 2014
• National Instruments LabVIEW Statecharts Module 2014

1. Hill Climb in Simulation: Program the virtual robot. Using feedback from the
accelerometer, your robot should differentiate between an incline and level ground,
and when on an incline, orient and drive towards the top. You must satisfy all design
requirements as specified in §5.2 (Hill Climb Design Requirements).

(a) Provide a screenshot of your climbing algorithm.
(b) Which states did you add from the previous lab?

2. Share your Feedback: what did you like about this lab, and what would you
change?

5.11. HILL CLIMB IN STATECHARTS (SIMULATION) 160

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.12 Hill Climb in Statecharts (Deployment)

This lab builds on the concept of model-based design for cyber-physical systems and
focuses on feedback-control. Your goal in this lab is to implement a Statechart on
myRIO that instructs the iRobot Create to navigate to the top of an incline while
avoiding cliffs and obstacles.

This lab builds on Lab 5.10: Navigation in Statecharts (Deployment) and Lab 5.11:
Hill Climb in Statecharts (Simulation).

5.12. HILL CLIMB IN STATECHARTS (DEPLOYMENT) 161

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.12.1 Prelab Reading

There is no prelab reading for this laboratory.

5.12. HILL CLIMB IN STATECHARTS (DEPLOYMENT) 162

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.12.2 Prelab Exercises

There are no prelab exercises for this laboratory.

5.12. HILL CLIMB IN STATECHARTS (DEPLOYMENT) 163

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.12.3 Lab Exercises

For the exercises below, begin with the solution you developed for Lab 5.10: Navigation
in Statecharts (Deployment); be sure to review the background from this lab, as it
underscores important differences between the simulator and the real robot.

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments LabVIEW 2014
• National Instruments LabVIEW for myRIO Module 2014
• National Instruments LabVIEW Real-Time Module 2014
• National Instruments NI-RIO 13.1
• National Instruments LabVIEW Statecharts Module 2014
• National Instruments myRIO 1900 or 1950
• DC power supply
• USB cable
• iRobot Create

1. Hill Climb on the iRobot: Program the real robot. Using feedback from the
accelerometer, your robot should differentiate between an incline and level ground,
and when on an incline, orient and drive towards the top. You must satisfy all design
requirements as specified in §5.2 (Hill Climb Design Requirements).

(a) Did your Statechart require modification to work on the physical target? If so,
what modifications did you make?

(b) How did you account for movement of the robot when reading from the
accelerometer? Describe any algorithms or filters used.

2. Share your Feedback: what did you like about this lab, and what would you
change?

5.12. HILL CLIMB IN STATECHARTS (DEPLOYMENT) 164

CHAPTER 5. THE CAL CLIMBER: CPS DESIGN WITH THE IROBOT CREATE

5.12.4 Troubleshooting

Refer to Lab 5.10: Navigation in Statecharts (Deployment) §5.10.4 (Troubleshooting)
for troubleshooting issues with the robot configuration.

5.12. HILL CLIMB IN STATECHARTS (DEPLOYMENT) 165

6
The Cal Klimber: CPS Design

with the Kobuki

This chapter describes a sequence of lab exercises to program the Cal Klimber, a
version of the iClebo Kobuki interfaced to the NI myRIO, to climb a “hill”. It mirrors
the exercises described in Chapter 5 but with a different robotic platform.

166

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.1 Navigation Design Requirements

We refer to the button “B0” on the Kobuki as the “Play” button. For CyberSim, a
separate “Play” button has been added on top of the Kobuki top view which maps to
the “B0” button.

The following are the design requirements for navigation laboratory exercises.

1. Startup: When powered on or reset, the robot shall not move until the ‘Play’
button is pressed.

2. Run: The robot shall begin movement the first time the ‘Play’ button is pressed
and continue running until paused or stopped.

(a) Ground Orientation: The ground orientation of your robot is the direction
the front of the robot is pointing when it first runs. The ground orientation
does not change after subsequent pausing/resuming; only after a power
cycle, reprogram or restart of the robot or its embedded controller.

(b) Drive: Your robot shall maintain ground orientation and drive forward
while on level ground and clear of obstacles.

(c) Obstacle Avoidance: Your robot shall avoid obstacles.
i. Cliff Avoidance: Your robot shall not fall off of cliffs or edges.

ii. Wheel Hazard Avoidance: Your robot shall avoid one or more wheels
losing contact with the ground. If a wheel loses contact with the
ground, your robot shall attempt to recover and move around the
incident hazard.

iii. Object Avoidance: Your robot shall avoid objects in its path. It is
acceptable for your robot to touch objects as long as it immediately
changes course in an attempt to avoid.

iv. Avoidance Robustness: Obstacle avoidance must always be satisfied,
even if multiple obstacles are encountered simultaneously or in short
succession.

v. Reorientaton: After avoiding an obstacle, your robot shall eventually
reorient to ground orientation.

3. Pause/Resume: The ‘Play’ button on the top of the robot shall start/resume
or pause movement of the robot. At any point the robot is moving, the ‘Play’
button shall cause it to immediately and completely stop. Subsequently pressing
the ‘Play’ button shall cause the robot to resume operation.

4. Performance: When moving, your robot must satisfy the following performance
characteristics.

6.1. NAVIGATION DESIGN REQUIREMENTS 167

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

(a) Turnabout: Your robot shall never rotate in place more than 180○.
(b) Chattering: Your robot shall not move erratically or exhibit chattering.
(c) Abnormal Termination: Your robot shall not abnormally terminate execu-

tion, with the exception of power or mechanical failure.
(d) Obstacle Hugging: Your robot shall not repeatedly encounter (‘hug’) an

obstacle for the purpose of navigation.
(e) Timeliness: Your robot shall achieve its goals in a timely manner.

Hint: Your robot does not need to follow a specific path or trajectory, or return to
a specific path or trajectory following obstacle avoidance – it need only eventually
return to and maintain its original ground orientation.

6.2 Hill Climb Design Requirements

The following are the design requirements for the Hill Climb laboratory exercises.
These requirements are in addition to the above navigation requirements.

1. Hill Climb: When an incline is encountered, your robot shall drive uphill
towards the top of the incline.

2. Hill Descend: When the top of an incline is reached, as indicated by cliffs or
impassible obstacles at the top of the incline, your robot shall drive downhill
towards the bottom of the incline.

3. Ground Stop: After climbing and descending, when the bottom of an incline
is reached, your robot shall stop and terminate execution – its final goal is
achieved.

6.2. HILL CLIMB DESIGN REQUIREMENTS 168

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.3 Program CyberSim from Visual Studio

These laboratory exercises serve as a tutorial on programming the CyberSim simulator
using C and Microsoft Visual Studio. You will load a template project and verify your
application is loaded by the simulator.

There are no prerequisites for this lab.

Figure 6.1: Microsoft Visual Studio.

6.3. PROGRAM CYBERSIM FROM VISUAL STUDIO 169

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.3.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• §1.7 (Equipment: Microsoft Visual Studio)
• §1.10 (Equipment: CyberSim)

6.3. PROGRAM CYBERSIM FROM VISUAL STUDIO 170

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.3.2 Prelab Exercises

There are no prelab exercises for this lab.

6.3. PROGRAM CYBERSIM FROM VISUAL STUDIO 171

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.3.3 Lab Exercises

The following exercises reference files are distributed with this courseware. Once
downloaded and extracted, navigate to the folder

src\C Statechart

to locate files referenced by these exercises.

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• Microsoft Visual Studio, one of the following:

– Visual Studio Express 2013 for Desktop (Windows 7 and Windows 8)
– Visual C++ Express 2010 (Windows XP SP3 and Windows Vista)

• National Instruments LabVIEW Run-Time Engine 2014

1. Launch Visual Studio Express: From the Windows Start Menu, launch Visual
Studio Express. Depending on your version, the Start Menu shortcut may be named
VS Studio Express 2013 for Desktop or Visual C++ Express .

2. Load the Template C Statechart: The C Statechart source code and build settings
are maintained by a Visual Studio Solution. From the top menu bar, select “File→Open
Project...” and navigate to the downloaded exercises,

src\C Statechart\Visual Studio Solution\libstatechart.sln

The solution references all source files needed to compile a statechart DLL for use
with CyberSim.

3. Review the Statechart source: The Solution Explorer pane is used to navigate files
in a solution. Open the source file C Statechart\kobukiNavigationStatechart.c, the only
file you need to modify to change the controller behavior in CyberSim.

4. Compile: From the top menu bar, select “Build→Build Solution” to compile the
solution. The output directory is automatically set to the CyberSim program folder.
Ensure there are no errors in the error list, and following a successful build, check

6.3. PROGRAM CYBERSIM FROM VISUAL STUDIO 172

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

that the output library was written to the CyberSim binary folder in the downloaded
exercise files:

CyberSim\libstatechart.dll

5. Launch CyberSim and Simulate: Open CyberSim from the downloaded exercise
files:

CyberSim\CyberSim.exe

Open the Configuration tab and in the “statechart” path field, enter libstatechart.dll.
Press

�� ��Start to begin a simulation. The simulation will progress, executing your
controller at each simulation step.

6. Stop the Simulation: Before you can change and recompile your controller, you
must stop the simulation to unload libstatechart.dll. Press the

�� ��Stop button to stop the
simulation. You do not need to exit CyberSim.

7. Launch a Debug Session (optional): Visual Studio can attach a debugger to
CyberSim to allow you to debug your control software. Visual Studio will launch
CyberSim automatically, using a command-line argument to point the simulator to the
compiled library. Close all other instances of CyberSim before beginning a debug
session.

In Visual Studio, from the top menu car select “Debug→Start Debugging”. The
solution should build and launch CyberSim. Press

�� ��Start to begin a simulation. The
debugger will attach when the simulation begins. You may use debugging features
such as watch windows and breakpoints to step through your code.

When you are ready to terminate a debugging session, disable all breakpoints and
from the Visual Studio top menu bar select “Debug→Continue” to allow CyberSim
to continue executing uninterrupted. Return to CyberSim and press

�� ��Exit to close
CyberSim, detatch the Visual Studio Debugger, and close the debugging session.

8. Close CyberSim Use the
�� ��Exit button to terminate CyberSim – do not close the

window, as this will terminate CyberSim without unloading your statechart library or
the ODE simulator.

Congratulations on using Visual Studio to write a controller for CyberSim!

6.3. PROGRAM CYBERSIM FROM VISUAL STUDIO 173

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

9. Share your Feedback: what did you like about this lab, and what would you
change?

6.3. PROGRAM CYBERSIM FROM VISUAL STUDIO 174

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.4 Navigation in C (Simulation)

These exercises guide you in creating a state machine in C using Microsoft Visual
Studio. Your state machine will read sensors and drive the Kobuki with a basic sense
of orientation while avoiding obstacles in a simulated environment.

This lab builds on Lab 6.3: Program CyberSim from Visual Studio.

6.4. NAVIGATION IN C (SIMULATION) 175

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.4.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• Introduction to Embedded Systems L (Lee and Seshia, 2015)
– Chapter 3: Discrete Dynamics §3.3 (Finite-State Machines) L

Skim these documents to understand their content and layout. You should be able to
quickly find relevant information within them. Sections pertaining to key topics may
be explicitly referenced, but you may need to reference other sections to complete
these exercises.

• Kobuki Documentation4 (YujinRobot, 2014b)

6.4. NAVIGATION IN C (SIMULATION) 176

http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://kobuki.yujinrobot.com/home-en/documentation/

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.4.2 Prelab Exercises

1. §1.5.3 (Kobuki Equipment Exercises) (all exercises). You may skip these if you
have already completed them for another laboratory in this chapter.

2. Review the template project provided for the lab exercises. The template code
implements a state machine; sketch it.

6.4. NAVIGATION IN C (SIMULATION) 177

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.4.3 Lab Exercises

For the exercises below, begin with the same source files you used in Lab 6.3: Program
CyberSim from Visual Studio, located in the downloaded exercise files:

src\C Statechart\

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• Microsoft Visual Studio, one of the following:

– Visual Studio Express 2013 for Desktop (Windows 7 and Windows 8)
– Visual C++ Express 2010 (Windows XP SP3 and Windows Vista)

• National Instruments LabVIEW Run-Time Engine 2014

1. Launch Visual Studio Express: Open Microsoft Visual Studio Express for Desktop
and import the solution libstatchart.sln. Clean and build the solution. The compiled
library is written to the CyberSim folder.

2. Execute the Template Code: Launch CyberSim.exe . In the Configuration tab,
browse for “Statechart” and select libstatechart.dll. Press

�� ��Start to begin a simulation.

3. Run a Debug Sequence: In the Configuration tab, select feedback mode “Debug
Navigation” and press

�� ��Check Grade to run through a sequence of tests that may
catch common errors or bugs as you build your solution.

4. Navigate in Simulation: Program the virtual robot. Program the robot to avoid
obstacles and maintain a basic sense of orientation. You must satisfy all design
requirements as specified in §6.1 (Navigation Design Requirements).

(a) Describe (and sketch) your obstacle avoidance algorithm.
(b) Did you follow a state machine architecture? If so, which states did you add to

the default project?

5. Share your Feedback: what did you like about this lab, and what would you
change?

6.4. NAVIGATION IN C (SIMULATION) 178

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.5 Navigation in C (Deployment)

These exercises guide you in creating a state machine in C using C & C++ Development
Tools for NI Linux Real-Time, Eclipse Edition and myRIO. Your state machine will
read sensors and drive the Kobuki with a basic sense of orientation while avoiding
obstacles.

This lab builds on Lab 3.3: Program the myRIO Processor from Eclipse and Lab 6.4:
Navigation in C (Simulation).

6.5. NAVIGATION IN C (DEPLOYMENT) 179

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.5.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• Introduction to Embedded Systems L (Lee and Seshia, 2015)
– Chapter 10: Input and Output §10.1.3 (Serial Interfaces) L

6.5. NAVIGATION IN C (DEPLOYMENT) 180

http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.5.2 Prelab Exercises

1. Review the template project provided for the lab exercises.

(a) Does the template code use polling or interrupts to read the Kobuki sensors? Is
this the same mechanism used by the Kobuki protocol?

(b) You want the Kobuki to continue executing a single command for 5 seconds.
How might you prevent it from shutting down mid-action?

6.5. NAVIGATION IN C (DEPLOYMENT) 181

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.5.3 Lab Exercises

The following exercises reference files are distributed with this courseware. Once
downloaded and extracted, navigate to the folder

src\C Statechart

to locate files referenced by these exercises.

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments NI-RIO 13.1
• National Instruments myRIO 1900 or 1950
• DC power supply
• USB cable
• C & C++ Development Tools for NI Linux Real-Time, Eclipse Edition
• iClebo Kobuki

1. Setup myRIO: Ensure myRIO is powered and connected to your computer. See
Lab 3.1: Connect to and Configure myRIO for instructions if you have not done this
before.

2. Verify the Robot Setup: Your iRobot Create is interfaced with a myRIO. Verify
the components are correctly wired, as shown in Fig. A.2.

3. Launch Eclipse: Open C & C++ Development Tools for NI Linux Real-Time,
Eclipse Edition and import the project archive src\kobukiNavigation.zip. Double-check
that the MyRio_1900 symbol is set and that the target has been correctly configured.
Clean and build all projects. Create a target connection, connect to the target, and
launch the Target Console. Create a run configuration for the irobotNavigation project.
See Lab 3.3: Program the myRIO Processor from Eclipse for instructions if you have
not done this before.

4. Execute the Template Code: Launch the run configuration and observe the mes-
sages printed to the Target Console. Place your robot in a clear space and press the
‘Play’ button on the top of the robot to toggle between pause and execute modes.

6.5. NAVIGATION IN C (DEPLOYMENT) 182

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

Hint: The easiest way to revise code and restart your process is for the original
process to complete. The template code in your project is designed to finish execution
when the ‘Advance’ button is pressed on the Kobuki. When finished executing, press
the ‘Advance’ button on the top of the robot to terminate the process. If you attempt
to launch a new process before the old process terminates, you may receive an error
that the executable could not be downloaded to the target.

5. Navigate the Kobuki: Program the real robot. Program the robot to avoid obstacles
and maintain a basic sense of orientation. You must satisfy all design requirements as
specified in the previous lab §6.1 (Navigation Design Requirements).

If you have previously programmed the robot and tested it with CyberSim, remember
to import your code from Visual Studio (as you did in Sec. 6.4) to Eclipse.

(a) Describe (and sketch) your obstacle avoidance algorithm.
(b) Did you follow a state machine architecture? If so, which states did you add to

the default project?

6. Share your Feedback: what did you like about this lab, and what would you
change?

6.5. NAVIGATION IN C (DEPLOYMENT) 183

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.5.4 Troubleshooting

Refer to §3.3.4 (Troubleshooting) for troubleshooting issues with Eclipse for NI
Real-Time Linux Targets.

6.5. NAVIGATION IN C (DEPLOYMENT) 184

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.6 Hill Climb in C (Simulation)

This lab builds on programming cyber-physical systems, specifically feedback-control.
Using Microsoft Visual Studio Express, you will implement a state machine in C that
instructs the Kobuki to navigate to the top of an incline while avoiding cliffs and
obstacles in a simulated environment.

This lab builds on Lab 6.4: Navigation in C (Simulation).

6.6. HILL CLIMB IN C (SIMULATION) 185

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.6.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• §1.6.1 (Introduction to the myRIO Accelerometer)
• Introduction to Embedded Systems L (Lee and Seshia, 2015)

– Chapter 7: Sensors and Actuators §7.1 (Models of Sensors and Actuators) L

– Chapter 7: Sensors and Actuators §7.2.1 (Measuring Tilt and Acceleration) L

Skim these documents to understand their content and layout. You should be able to
quickly find relevant information within them. Sections pertaining to key topics may
be explicitly referenced, but you may need to reference other sections to complete
these exercises.

• Kobuki Documentation4 (YujinRobot, 2014b)

These documents go beyond the scope of the core concepts of these exercises, and
are provided as additional resources.

• Using an Accelerometer for Inclination Sensing L (Fisher, 2010)
• Implementing a Tilt-Compensated eCompass using Accelerometer and Magne-

tometer Sensors L (Ozyagcilar, 2011)
• Computational Principles of Mobile Robotics (Dudek and Jenkin, 2000)

6.6. HILL CLIMB IN C (SIMULATION) 186

http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://kobuki.yujinrobot.com/home-en/documentation/
http://LeeSeshia.org/lab/releases/1.70/documents/Fisher_10_UsingAnAccelerometerForInclinationSensing.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Ozyagcilar_11_ImplementingCompass.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Ozyagcilar_11_ImplementingCompass.pdf

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.6.2 Prelab Exercises

1. §1.6.3 (MyRIO Accelerometer Exercises) (all exercises). You may skip these if
you have already completed them for another laboratory in this chapter.

6.6. HILL CLIMB IN C (SIMULATION) 187

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.6.3 Lab Exercises

For the exercises below, begin with the solution you developed for Lab 6.4: Navigation
in C (Simulation), located in the downloaded exercise files:

src\C Statechart\

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• Microsoft Visual Studio, one of the following:

– Visual Studio Express 2013 for Desktop (Windows 7 and Windows 8)
– Visual C++ Express 2010 (Windows XP SP3 and Windows Vista)

• National Instruments LabVIEW Run-Time Engine 2014

1. Hill Climb in Simulation: Program the virtual robot. Using feedback from the
accelerometer, your robot should differentiate between an incline and level ground,
and when on an incline, orient and drive towards the top. You must satisfy all design
requirements as specified in §6.2 (Hill Climb Design Requirements).

(a) Describe (and sketch) your climbing algorithm.
(b) Did you follow a state machine architecture? If so, which states did you add?
(c) How did you account for movement of the robot when reading from the

accelerometer? Describe any algorithms or filters used.

2. Share your Feedback: what did you like about this lab, and what would you
change?

6.6. HILL CLIMB IN C (SIMULATION) 188

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.7 Hill Climb in C (Deployment)

This lab builds on programming cyber-physical systems, specifically feedback-control.
Using C & C++ Development Tools for NI Linux Real-Time, Eclipse Edition, you
will implement a state machine in C on myRIO that instructs the Kobuki to navigate
to the top of an incline while avoiding cliffs and obstacles.

This lab builds on Lab 6.5: Navigation in C (Deployment) and Lab 6.6: Hill Climb
in C (Simulation).

6.7. HILL CLIMB IN C (DEPLOYMENT) 189

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.7.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• §1.6.1 (Introduction to the myRIO Accelerometer)
• Introduction to Embedded Systems L (Lee and Seshia, 2015)

– Chapter 7: Sensors and Actuators §7.1 (Models of Sensors and Actuators) L

– Chapter 7: Sensors and Actuators §7.2.1 (Measuring Tilt and Acceleration) L

Skim these documents to understand their content and layout. You should be able to
quickly find relevant information within them. Sections pertaining to key topics may
be explicitly referenced, but you may need to reference other sections to complete
these exercises.

• Kobuki Documentation4 (YujinRobot, 2014b)

These documents go beyond the scope of the core concepts of these exercises, and
are provided as additional resources.

• Using an Accelerometer for Inclination Sensing L (Fisher, 2010)
• Implementing a Tilt-Compensated eCompass using Accelerometer and Magne-

tometer Sensors L (Ozyagcilar, 2011)
• Computational Principles of Mobile Robotics (Dudek and Jenkin, 2000)

6.7. HILL CLIMB IN C (DEPLOYMENT) 190

http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://kobuki.yujinrobot.com/home-en/documentation/
http://LeeSeshia.org/lab/releases/1.70/documents/Fisher_10_UsingAnAccelerometerForInclinationSensing.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Ozyagcilar_11_ImplementingCompass.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Ozyagcilar_11_ImplementingCompass.pdf

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.7.2 Prelab Exercises

1. §1.6.3 (MyRIO Accelerometer Exercises) (all exercises). You may skip these if
you have already completed them for another laboratory in this chapter.

6.7. HILL CLIMB IN C (DEPLOYMENT) 191

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.7.3 Lab Exercises

For the exercises below, begin with the solution you developed for Lab 6.6: Hill
Climb in C (Simulation), located in the downloaded exercise files:

src\C Statechart\

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments NI-RIO 13.1
• National Instruments myRIO 1900 or 1950
• DC power supply
• USB cable
• C & C++ Development Tools for NI Linux Real-Time, Eclipse Edition
• iClebo Kobuki

1. Hill Climb on Kobuki: Program the real robot. Using feedback from the accelerom-
eter, your robot should differentiate between an incline and level ground, and when on
an incline, orient and drive towards the top. You must satisfy all design requirements
as specified in §6.2 (Hill Climb Design Requirements).

(a) Describe (and sketch) your climbing algorithm.
(b) Did you follow a state machine architecture? If so, which states did you add?
(c) How did you account for movement of the robot when reading from the

accelerometer? Describe any algorithms or filters used.

2. Share your Feedback: what did you like about this lab, and what would you
change?

6.7. HILL CLIMB IN C (DEPLOYMENT) 192

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.7.4 Troubleshooting

Refer to §3.3.4 (Troubleshooting) for troubleshooting issues with Eclipse.

6.7. HILL CLIMB IN C (DEPLOYMENT) 193

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.8 Program CyberSim from LabVIEW

These laboratory exercises serve as a tutorial on programming the CyberSim simulator
using Statecharts and LabVIEW. You will load a template project and verify your
application is loaded by the simulator.

There are no prerequisites for this lab.

6.8. PROGRAM CYBERSIM FROM LABVIEW 194

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.8.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• §1.9 (Equipment: LabVIEW)
• §1.10 (Equipment: CyberSim)

6.8. PROGRAM CYBERSIM FROM LABVIEW 195

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.8.2 Prelab Exercises

There are no prelab exercises for this lab.

6.8. PROGRAM CYBERSIM FROM LABVIEW 196

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.8.3 Lab Exercises

The following exercises reference files are distributed with this courseware. Once
downloaded and extracted, navigate to the folder

src\LabVIEW\statechart

to locate files referenced by these exercises.

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments LabVIEW 2014
• National Instruments LabVIEW Statecharts Module 2014

1. Launch LabVIEW: From the Windows Start Menu, open National Instruments
LabVIEW.

2. Load the Template LabVIEW Statechart: The LabVIEW Statechart source code
and build settings are maintained by a LabVIEW Project. From the top menu bar,
select “File→Open Project...” and navigate to the downloaded exercises,

src\LabVIEW\Statechart.lvproj

The project references all source files needed to create a LabVIEW Statechart for use
with CyberSim.

3. Review the Statechart source: The Project Explorer pane is used to navigate files.
Open the source file Statechart.lvsc\Diagram.vi, the only file you need to modify to
change the controller behavior in CyberSim.

4. Recompile the Statechart: Press the “Force Code Generation for this Statechart”
button to recompile the Statechart for myRIO.

5. Verify the Statechart is Executable: The LabVIEW Statechart file Statechart.lvsc
is called from a wrapper VI, Simulation Statechart.vi. Open this VI from the Project
Explorer and ensure the Run arrow is solid white – if a broken gray arrow is shown
instead, press the broken arrow to open the errors dialog. You will need to save

6.8. PROGRAM CYBERSIM FROM LABVIEW 197

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

the VI because the statechart code in Statechart.lvsc is not automatically compiled by
Simulation Statechart.vi until you save. Without saving, you may be running an old
statechart.

Save Simulation Statechart.vi after recompiling the Statechart.

6. Launch CyberSim and Simulate: Open CyberSim from the downloaded exercise
files:

CyberSim\CyberSim.exe

Open the Configuration tab and in the “statechart” path field, enter

..\src\LabVIEW\statechart\Simulation Statechart.vi

Press
�� ��Start to begin a simulation. If you experience an error about the reference to

Simulation Statechart.vi, go back to the VI and save it. The simulation will progress,
executing your controller at each simulation step. You will see your Statechart
executing in the Statechart Display tab.

7. Stop the Simulation: Before you can change and recompile your controller, you
must stop the simulation to unload Statechart.lvsc. Press the

�� ��Stop button to stop the
simulation. You do not need to exit CyberSim.

8. Close CyberSim Use the
�� ��Exit button to terminate CyberSim – do not close the

window, as this will terminate CyberSim without unloading your statechart or the
ODE simulator.

Congratulations on using LabVIEW to write a controller for CyberSim!

9. Share your Feedback: what did you like about this lab, and what would you
change?

6.8. PROGRAM CYBERSIM FROM LABVIEW 198

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.9 Navigation in Statecharts (Simulation)

You will design a control algorithm using the Statecharts model of computation. Your
task is to design a Statechart that instructs the robot to maintain a basic sense of
orientation while avoiding obstacles in a virtual world.

This lab builds on Lab 6.8: Program CyberSim from LabVIEW.

6.9. NAVIGATION IN STATECHARTS (SIMULATION) 199

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.9.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• §1.5 (Equipment: iClebo Kobuki)
• §1.10.1 (Introduction to CyberSim)
• Introduction to Embedded Systems L (Lee and Seshia, 2015)

– Chapter 3: Discrete Dynamics §3.3 (Finite-State Machines) L

– Chapter 5: Composition of State Machines L

• Designing Applications with the NI LabVIEW Statechart Module4 (Washington,
2009)

• Developing Applications with the NI LabVIEW Statechart Module L (National
Instruments, 2012b)

Skim these documents to understand their content and layout. You should be able to
quickly find relevant information within them. Sections pertaining to key topics may
be explicitly referenced, but you may need to reference other sections to complete
these exercises.

• Kobuki Documentation4 (YujinRobot, 2014b)
• LabVIEW Statechart Module Help4 (National Instruments, 2012d)

6.9. NAVIGATION IN STATECHARTS (SIMULATION) 200

http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://www.ni.com/webcast/225/en/
http://LeeSeshia.org/lab/releases/1.70/documents/NationalInstruments_12_DevelopingApplicationsWithNILabVIEWStatechartModule.pdf
http://kobuki.yujinrobot.com/home-en/documentation/
http://zone.ni.com/reference/en-XX/help/372103D-01/

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.9.2 Prelab Exercises

1. §1.5.3 (Kobuki Equipment Exercises) (all exercises). You may skip these if you
have already completed them for another laboratory in this chapter.

2. How does the Statecharts model of computation differ from finite state machines?

3. In a Statechart, what is the difference between a state and a region?

4. In LabVIEW Statecharts, what is represented by an arrow containing three open or
closed cells? What does each cell represent? What does this arrow connect?

6.9. NAVIGATION IN STATECHARTS (SIMULATION) 201

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.9.3 Lab Exercises

The following exercises reference files are distributed with this courseware. Once
downloaded and extracted, navigate to the folder

src\LabVIEW\statechart

to locate files referenced by these exercises.

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments LabVIEW 2014
• National Instruments LabVIEW Statecharts Module 2014

The LabVIEW Statecharts editor enables developers to program in the Statecharts
model of computation. When changing default value of a Statechart StateData control,
open the Statechart diagram and press the “Force Code Generation for this Statechart”

button to recompile the Statechart.

1. Open the Project: From the extracted project files, open the file Statechart.lvproj
(LabVIEW Project File). It may take a while to load the project. You may receive a
warning that dependencies were loaded from a new path; this is normal and may be
disregarded.

Review the steps listed in Sec. 6.8.3 to compile the Statechart.

2. Execute the Template Code: Launch CyberSim.exe . In the Configuration tab,
browse for “Statechart” and select src\LabVIEW\statechart\Simulation Statechart.vi.
Press

�� ��Start to begin a simulation.

3. Run a Debug Sequence: In the Configuration tab, select feedback mode “Debug
Navigation” and press

�� ��Debug to run through a sequence of tests that may catch
common errors or bugs as you build your solution.

4. Navigate in Simulation: Program the virtual robot. Your code should reside
entirely in the Statechart – you do not need to modify the block diagram of Simulation
Statechart.vi.

6.9. NAVIGATION IN STATECHARTS (SIMULATION) 202

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

Program the robot to avoid obstacles and maintain a basic sense of orientation. You
must satisfy all design requirements as specified below in §6.1 (Navigation Design
Requirements).

(a) Provide a description and screenshot of your obstacle avoidance algorithm.

5. Share your Feedback: what did you like about this lab, and what would you
change?

6.9. NAVIGATION IN STATECHARTS (SIMULATION) 203

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.10 Navigation in Statecharts (Deployment)

You will design a control algorithm using the Statecharts model of computation on
myRIO, verify in simulation in the LabVIEW Robotics Simulator, and deploy the
solution to the Kobuki. Your task is to design a Statechart that instructs the robot to
maintain a basic sense of orientation while avoiding obstacles.

This lab builds on Lab 3.4: Program the myRIO Processor from LabVIEW and Lab
6.9: Navigation in Statecharts (Simulation).

6.10. NAVIGATION IN STATECHARTS (DEPLOYMENT) 204

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.10.1 Prelab Reading

There is no prelab reading for this laboratory.

6.10. NAVIGATION IN STATECHARTS (DEPLOYMENT) 205

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.10.2 Prelab Exercises

There are no prelab exercises for this laboratory.

6.10. NAVIGATION IN STATECHARTS (DEPLOYMENT) 206

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.10.3 Lab Exercises

The following exercises reference files are distributed with this courseware. Once
downloaded and extracted, navigate to the folder

src\LabVIEW\statechart

to locate files referenced by these exercises.

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments LabVIEW 2014
• National Instruments LabVIEW for myRIO Module 2014
• National Instruments LabVIEW Real-Time Module 2014
• National Instruments NI-RIO 13.1
• National Instruments LabVIEW Statecharts Module 2014
• National Instruments myRIO 1900 or 1950
• DC power supply
• USB cable
• iClebo Kobuki

1. Setup myRIO: Ensure myRIO is powered and connected to your computer. See
Lab 3.1: Connect to and Configure myRIO for instructions if you have not done this
before.

2. Verify the Robot Setup: Your Kobuki is interfaced with a myRIO. Verify that the
components are correctly wired, as shown in Fig. A.4.

3. Open the Project: From the extracted project files, open the file Statechart.lvproj
(LabVIEW Project File). It may take a while to load the project. You may receive a
warning that dependencies were loaded from a new path; this is normal and may be
disregarded.

4. Navigate the Kobuki: Program the real robot. The Statechart you designed in
the simulator is configured to deploy on your embedded target. In the Project
Explorer, navigate to “myRIO→Statechart” and open Diagram.vi. Press the “Force
Code Generation for this Statechart” button to recompile the Statechart for myRIO.

6.10. NAVIGATION IN STATECHARTS (DEPLOYMENT) 207

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

Open Target.vi. This is the main VI for the myRIO and is responsible for sampling
the accelerometer, reading the robot’s sensors, and transmitting drive commands. You
code should reside entirely in the Statechart – you do not need to modify any others
VIs. A lowpass filter has been provided to smooth the accelerometer signal.

Run Target.vi to deploy your Statechart to your target.

Program the robot to avoid obstacles and maintain a basic sense of orientation. You
must satisfy all design requirements as specified in the previous lab §6.1 (Navigation
Design Requirements).

(a) Did your Statechart require modification to work on the physical target? If so,
what modifications did you make?

(b) How would you compare programming in Statecharts to programming in a
traditional programming language such as C?

5. Share your Feedback: what did you like about this lab, and what would you
change?

6.10. NAVIGATION IN STATECHARTS (DEPLOYMENT) 208

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.10.4 Troubleshooting

I receive the error “Kobuki Navigation Target loaded with errors and was closed” when
attempting to run on target: This occurs when cached generated code becomes corrupt.
To resolve the issue, open the LabVIEW configuration file from the LabVIEW program
folder, <LabVIEW>\LabVIEW.ini . Under the [LabVIEW] section add the line

useCacheForDeployment=False

Save and restart LabVIEW.

Alternatively, you may resolve the issue by renaming your Statechart.

I receive the error “LabVIEW: Resource not found. An error occurred loading VI.”
This occurs the custom display element of a Statechart becomes corrupt. The custom
data display is not used by this lab and can be restored to resolve the issue. From the
downloaded project files, open

src\LabVIEW\statechart\Restore Corrupt Statechart\Restore Corrupt Statechart.vi

Follow the instructions on the VI to restore your Statechart.

6.10. NAVIGATION IN STATECHARTS (DEPLOYMENT) 209

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.11 Hill Climb in Statecharts (Simulation)

This lab builds on the concept of model-based design for cyber-physical systems and
focuses on feedback-control. Your goal in this lab is to implement a Statechart that
instructs the Kobuki to navigate to the top of an incline while avoiding cliffs and
obstacles in a simulated environment.

This lab builds on Lab 6.9: Navigation in Statecharts (Simulation).

6.11. HILL CLIMB IN STATECHARTS (SIMULATION) 210

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.11.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

• §1.6.1 (Introduction to the myRIO Accelerometer).
• Introduction to Embedded Systems L (Lee and Seshia, 2015)

– Chapter 7: Sensors and Actuators §7.1 (Models of Sensors and Actuators) L

– Chapter 7: Sensors and Actuators §7.2.1 (Measuring Tilt and Acceleration) L

Skim these documents to understand their content and layout. You should be able to
quickly find relevant information within them. Sections pertaining to key topics may
be explicitly referenced, but you may need to reference other sections to complete
these exercises.

• Kobuki Documentation4 (YujinRobot, 2014b)

These documents go beyond the scope of the core concepts of these exercises, and
are provided as additional resources.

• Using an Accelerometer for Inclination Sensing L (Fisher, 2010)
• Implementing a Tilt-Compensated eCompass using Accelerometer and Magne-

tometer Sensors L (Ozyagcilar, 2011)
• Computational Principles of Mobile Robotics (Dudek and Jenkin, 2000)

6.11. HILL CLIMB IN STATECHARTS (SIMULATION) 211

http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/LeeSeshia_15_EmbeddedSystems.pdf
http://kobuki.yujinrobot.com/home-en/documentation/
http://LeeSeshia.org/lab/releases/1.70/documents/Fisher_10_UsingAnAccelerometerForInclinationSensing.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Ozyagcilar_11_ImplementingCompass.pdf
http://LeeSeshia.org/lab/releases/1.70/documents/Ozyagcilar_11_ImplementingCompass.pdf

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.11.2 Prelab Exercises

1. §1.6.3 (MyRIO Accelerometer Exercises) (all exercises). You may skip these if
you have already completed them for another laboratory in this chapter.

6.11. HILL CLIMB IN STATECHARTS (SIMULATION) 212

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.11.3 Lab Exercises

For the exercises below, begin with the solution you developed for Lab 6.9: Navigation
in Statecharts (Simulation), located in the downloaded exercise files:

src\LabVIEW\statechart

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments LabVIEW 2014
• National Instruments LabVIEW Statecharts Module 2014

1. Hill Climb in Simulation: Program the virtual robot. Using feedback from the
accelerometer, your robot should differentiate between an incline and level ground,
and when on an incline, orient and drive towards the top. You must satisfy all design
requirements as specified in §6.2 (Hill Climb Design Requirements).

(a) Provide a screenshot of your climbing algorithm.
(b) Which states did you add from the previous lab?

2. Share your Feedback: what did you like about this lab, and what would you
change?

6.11. HILL CLIMB IN STATECHARTS (SIMULATION) 213

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.12 Hill Climb in Statecharts (Deployment)

This lab builds on the concept of model-based design for cyber-physical systems and
focuses on feedback-control. Your goal in this lab is to implement a Statechart on
myRIO that instructs the Kobuki to navigate to the top of an incline while avoiding
cliffs and obstacles.

This lab builds on Lab 6.10: Navigation in Statecharts (Deployment) and Lab 6.11:
Hill Climb in Statecharts (Simulation).

6.12. HILL CLIMB IN STATECHARTS (DEPLOYMENT) 214

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.12.1 Prelab Reading

There is no prelab reading for this laboratory.

6.12. HILL CLIMB IN STATECHARTS (DEPLOYMENT) 215

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.12.2 Prelab Exercises

There are no prelab exercises for this laboratory.

6.12. HILL CLIMB IN STATECHARTS (DEPLOYMENT) 216

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.12.3 Lab Exercises

For the exercises below, begin with the solution you developed for Lab 6.10: Navigation
in Statecharts (Deployment); be sure to review the background from this lab, as it
underscores important differences between the simulator and the real robot.

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

• Windows XP SP3, Windows Vista, Windows 7, or Windows 8
• National Instruments LabVIEW 2014
• National Instruments LabVIEW for myRIO Module 2014
• National Instruments LabVIEW Real-Time Module 2014
• National Instruments NI-RIO 13.1
• National Instruments LabVIEW Statecharts Module 2014
• National Instruments myRIO 1900 or 1950
• DC power supply
• USB cable
• iClebo Kobuki

1. Hill Climb on the Kobuki: Program the real robot. Using feedback from the
accelerometer, your robot should differentiate between an incline and level ground,
and when on an incline, orient and drive towards the top. You must satisfy all design
requirements as specified in §6.2 (Hill Climb Design Requirements).

(a) Did your Statechart require modification to work on the physical target? If so,
what modifications did you make?

(b) How did you account for movement of the robot when reading from the
accelerometer? Describe any algorithms or filters used.

2. Share your Feedback: what did you like about this lab, and what would you
change?

6.12. HILL CLIMB IN STATECHARTS (DEPLOYMENT) 217

CHAPTER 6. THE CAL KLIMBER: CPS DESIGN WITH THE KOBUKI

6.12.4 Troubleshooting

Refer to Lab 6.10: Navigation in Statecharts (Deployment) §6.10.4 (Troubleshooting)
for troubleshooting issues with the robot configuration.

6.12. HILL CLIMB IN STATECHARTS (DEPLOYMENT) 218

7
Projects

The exercises in this chapter guide you through basic skills in project management, a
critical component of any successful capstone design project. Additionally, a series of
open-ended projects are proposed as starting points for a significant design project.

219

CHAPTER 7. PROJECTS

7.1 Project Management

Contributing Author: Christopher X. Brooks

A capstone design project is a significant team undertaking, and can benefit from some
simple project management. Well-managed projects are less stressful and ultimately
more successful. Some useful project management tasks include:

• Specify the project by submitting a one-page charter.
• Once a project charter has been reviewed and approved, submit a project plan

of action, a timeline for milestones, and a division of responsibilities for team
members.

• Indicate core concepts addressed by the project, such as concurrency, modeling
of physical dynamics, reliable real-time behavior, modal behavior governed by
finite state machines coupled with formal analysis, real-time networks, simulation
strategies, and design methodologies for embedded systems design.

• Pair with a mentor with relevant experience who is a professor, graduate student,
researcher, or industry professional.

• Perform weekly progress checkpoints, which may alternate between in-class
presentations and one-page milestone reports comparing progress to the original
project charter.

• At the project halfway point, host live demonstrations during a department
open-house, which facilitates functional milestones.

• Periodically submit peer evaluation forms to identify any issues with a particular
team member.

7.1. PROJECT MANAGEMENT 220

CHAPTER 7. PROJECTS

7.1.1 Prelab Reading

Carefully read the following content and be comfortable with the concepts covered
before beginning these exercises.

1. Project Management Instructions L (Brooks, 2008)
2. Tortoise SVN4 (Kung et al., 2011)

Skim these documents to understand their content and layout. You should be able to
quickly find relevant information within them. Sections pertaining to key topics may
be explicitly referenced, but you may need to reference other sections to complete
these exercises.

1. Project Management and Embedded Systems L (Brooks, 2012b)
2. Wikipedia

(a) Project Charter4 (Wikipedia, 2013c)
(b) Milestone (Project Management)4 (Wikipedia, 2013b)
(c) Work Breakdown Structure4 (Wikipedia, 2013e)

3. EECS Instructional Public Documentation - SVN Help4 (Brooks, 2012a)

You will need the following equipment and software to complete this lab, in addition
to equipment used in prerequisite labs (if applicable):

1. Desktop computer
2. Word processor
3. Tortoise SVN Product Page4 (Tortoise SVN Team, 2013)

7.1. PROJECT MANAGEMENT 221

http://LeeSeshia.org/lab/releases/1.70/documents/Brooks_08_ProjectManagement.pdf
http://tortoisesvn.net/docs/release/TortoiseSVN_en/
http://LeeSeshia.org/lab/releases/1.70/documents/Brooks_12_ProjectManagementSlides.pdf
http://en.wikipedia.org/wiki/Project_charter
http://en.wikipedia.org/wiki/Milestone_(project_management)
http://en.wikipedia.org/wiki/Work_breakdown_structure
https://inst.eecs.berkeley.edu/cgi-bin/pub.cgi?file=svn.help
http://tortoisesvn.net/

CHAPTER 7. PROJECTS

7.1.2 Prelab Exercises

1. What are two advantages of using a version control system such as SVN?

2. Alice and Bob both update their working copies at the beginning of the day. They
start editing the same plain-text file. Alice commits her changes in the afternoon.
What happens when Bob tries to commit his changes at the end of the day? What
should Bob do?

3. What is the SVN checkout URL for your group (your group number is on the
Google spreadsheet)?

4. How long should a project charter be?

5. Why is it important to have a brief charter?

6. Suppose you are writing the work breakdown to design an automobile, which
has subsystems such as steering, horn, drivetrain, transmission, motor, etc. Give an
example of a breakdown which would

(a) Violate the 100% rule.
(b) Violate the Mutually Exclusive rule

7. Make a short list of skills / experience / interests you think would be most relevant
for your project. (i.e. Microcontroller coding, Circuit design, Project Management,
etc.) Next to each, give an example project or class you took which demonstrates that
skill.

8. If you know you will be using a mentored project from the website, communicate
with them before this lab, asking for whatever details you need to know to complete
the charter & schedule. i.e. you will need to know what components need to be
designed, whether there is hardware tasks involved, if there are deadlines outside of
this class, and other considerations. You should also schedule regular meetings with
them for them to track your progress. List all such components, tasks, and deadlines.

7.1. PROJECT MANAGEMENT 222

CHAPTER 7. PROJECTS

7.1.3 Lab Exercises

The exercises here guide you in the creation of a project charter. Your charter serves
as the lab report for these exercises. Do not enumerate the questions below in your
charter, but instead make sure that each question is answered somewhere in your
project charter.

TortoiseSVN is a frontend for the program SVN, a version-control system. TortoiseSVN
provides handy right-click menus for updating, committing and reviewing your files.

1. Check out a Repository: To checkout your repository, create a new directory
where you want the files (preferably one on a network drive). Right-click on the new
directory and select “SVN Checkout...”. In “URL Repository” enter the URL of your
repository. When a module is checked out, notice a check mark appears next to the
folder indicating your local copy is up-to-date.

2. Add Files to your Repository: Copy or move the files from your project charter
and schedule into this newly created folder. Select both and right-click on them.
Select “Tortoise SVN → Add...”. Notice there are now plus-signs next to the files.
This means that this file is to be added to the repository on the next commit.

Go up a directory. The folder containing your local copy should now have a red
exclamation point indicating your local copy is out-of-date. Right-click on the folder
and select “SVN Commit...”. Enter a message such as “Added project charter &
schedule”. Although not strictly enforced, it is good practice to always provide a
commit message for other users and for remembering what you did in the future .
The folder should now turn green again.

Go back into the directory. Your project charter and schedule should now have green
checkmarks indicating they are up-to-date. Try changing one of them– you should get
a red exclamation point indicating local changes are out-of-date. You can commit these
changes in the same way as before, but suppose you made a mistake and you want to
undo your changes. Right-click on the file and select “Tortoise SVN → Revert...”. If
you press “OK”, the latest version in the repository will overwrite your copy. You
can also revert to several versions behind if you want.

Note that because your files are probably in MS Word or some other binary format,
then you cannot diff them easily. The diff feature works on plain-text files, such as C
source files, and highlights the changes, line-by-line, that you changed between two
revisions. This is essential for finding out which lines of code broke your program.

7.1. PROJECT MANAGEMENT 223

CHAPTER 7. PROJECTS

For plain-text files, you can also handle merges which happen if two people tried to
change the same lines– you will have to pick which one is used. For binary files, to
“merge” you must simply pick one entire file or the other.

You will probably want to have every member set up their respective checkouts from
your repository. This will allow you to work on the code somewhat independently, but
with a central master copy. You should get in the habit of committing your changes
at least once a day (like the CTRL-S of code development). Your TAs and mentors
will also be using your repository to be familiar with your code.

3. (optional) Install SVN on Another Computer: This section is for your information
in case you want to set this up on your own computer.

Windows: Installation is fairly easy– simply download and install TortoiseSVN from
Tortoise SVN Product Page4 (Tortoise SVN Team, 2013), making sure to get 32-bit
or 64-bit based on what your OS is. On Windows 7, there may be problems with the
icons showing properly. Therefore, you will need to use the “check for modifications”
item in TortiseSVN’s right-click menu.

Linux: The “svn” command-line program should be available in most package
repositories. For example, on Ubuntu systems, you can use “sudo apt-get install
subversion”. Refer to the man-page or online documentation for information on how
to use the command-line program. There are also frontends available, such as kdesvn
(“sudo apt-get install kdesvn”).

Mac: Mac OS X 10.7 may already have Subversion installed. To test this, start up a
Terminal window and run “svn help”. If svn is not found, then install XCode from
http://developer.apple.com/xcode. Note that XCode is roughly a 1 gigabyte download.
Apple is charging $5 for XCode 4, but XCode 3 will also work.

Unfortunately for the Mac, the free GUI Subversion options are fairly limited. SCPlugin
seems to be the best option out there, coming from the makers of subversion. It can
be found at http://scplugin.tigris.org/.

4. Team Member and Project Selection: During this lab (your choice – before or
after your charter is written) discuss with your lab TA that all skills requirements for
your project are satisfied by your group members. If you have a large (4 or 5) group,
be prepared to justify why the extra manpower is needed.

(a) Who are your project members?
(b) Give a one or two sentence description of your project.

7.1. PROJECT MANAGEMENT 224

http://tortoisesvn.net/
http://developer.apple.com/xcode
http://scplugin.tigris.org/

CHAPTER 7. PROJECTS

5. Plan your Project: Follow Project Management Instructions4 (Brooks, 2008) to
create a project charter.

Ensure that you are reasonable in your objectives and deliverables, especially consider-
ing the experience of your group. i.e. Do not make a circuit board a major deliverable
if no group member has any circuit design experience. On the same token, the scope
of the project should match the size of the group and the goal be to produce an
interesting and impressive product.

Your charter should include:

(a) Overview
(b) Approach
(c) Objectives
(d) Major Deliverables
(e) Constraints
(f) Risk and Feasibility

Your charter should be one (1) page. The point is succinctly summarize your project
for a busy manager.

Each group should submit one charter.

6. Set Milestones and a Schedule: Working backwards from the completion due date,
determine when tasks need to be done to complete the project on time. Ensure you are
allowing adequate time for debugging – integrating disjoint components from several
people can take a week or more. Be sure to consider events such as Spring Break,
Finals Week, etc.. Milestones should indicate which team member is responsible and
be no more than one week apart.

Be sure to include non-technical tasks such as practicing the presentation or writing
the report. Also include a plan to meet with your mentor, preferably once a week
(you may want to organize your milestones to land on these dates). Be sure to include
vacations like Spring Break.

Do not hesitate to be painfully specific. Through the duration of this project, you
should submit milestone reports to track your progress. Certainly, the milestones could
change during the course of the project as you learn and debug things.

7. Set a Work Breakdown Structure: Generate a Work Breakdown Structure (WBS)
for your project, being careful to satisfy the 100% and mutual exclusion rules. The

7.1. PROJECT MANAGEMENT 225

http://technology.berkeley.edu/cio/tpo/project/pmresources/tools/Project_Charter_Instructions.doc

CHAPTER 7. PROJECTS

diagram should show dependencies between milestones and which tasks can be
performed in parallel. For simpler projects, this could be very linear, but try to divide
the tasks so as much as possible can be done in parallel so work can be split between
people. Ensure that the WBS answers when a milestone will be finished and who is
responsible for it finishing.

8. Check your Charter into SVN.

9. Individual Writeup: In addition to the project charter, each team member should
write an individual report which answers the following questions:

(a) What is the critical path on your WBS? How long will it take to complete?
(b) What are the amounts time you have allotted to:

i. Design
ii. Development (i.e. new stuff being written)

iii. Debugging
iv. Other tasks (such as writing presentations or reports)

(c) How have you designed your schedule adjust for unforeseen delays or early
completions?

(d) When have you regularly scheduled to meet with your mentor?

10. Share your Feedback: what did you like about this lab, and what would you
change?

7.1. PROJECT MANAGEMENT 226

A
Lab Setup

This appendix describes how to configure hardware and software to support all of the
laboratory exercises in this text.

227

APPENDIX A. LAB SETUP

A.1 Install LabVIEW

From the National Instruments LabVIEW National Instruments LabVIEW 2014 Plat-
form DVD or Academic Site License DVD, install the following products

• LabVIEW English
• VI Package Manager
• Device Drivers
• Real-Time → Real-Time Module
• FPGA → FPGA Module
• FPGA → Compilation Tools for FPGA Devices other than Virtex-II
• Simulation and Control → PID and Fuzzy Logic Toolkit
• Signal Processing, Analysis, and Math → MathScript RT Module
• Software Development and Deployment → Statechart Module
• Robotics → Robotics Module

All other packages may be deselected. When prompted for drivers to install, the
default settings will suffice.

From the LabVIEW National Instruments LabVIEW 2014 for myRIO DVD, use
the default install settings to install the LabVIEW National Instruments LabVIEW
2014 for myRIO Module and supporting drivers. The LabVIEW National Instruments
LabVIEW 2014 module for myRIO may also be downloaded from

http://joule.ni.com/nidu/cds/view/p/id/4223/lang/en

Once all installers are complete, run NI Update Service to update all NI software.

Download two configuration files from the laboratory website,

http://LeeSeshia.org/lab/releases/1.70/labviewConfigurationFiles.zip

and extract its contents to your LabVIEW program directory, commonly

C:\Program Files (x86)\National Instruments\LabVIEW 2014

A.1. INSTALL LABVIEW 228

http://joule.ni.com/nidu/cds/view/p/id/4223/lang/en
http://LeeSeshia.org/lab/releases/1.70/labviewConfigurationFiles.zip

APPENDIX A. LAB SETUP

Run through Lab 3.4: Program the myRIO Processor from LabVIEW to ensure the
software is configured correctly and to add any firewall exceptions needed.

A.1.1 Troubleshooting

When running NI Update Service, I receive the error message “This service has been
disabled by your administrator”: This indicates an environment variable is preventing
the FlexLM software from querying the academic site license – this is a variable
set by either Xilinx SDK or other software using FlexLM licensing services. From
the System settings, find Environment Variables and record the value of the key
“LM_LICENSE_FILE”. Clear the value (temporarily) and run NI Update again. When
the update is complete, restore the value of the LM_LICENSE_FILE key.

A.1. INSTALL LABVIEW 229

APPENDIX A. LAB SETUP

A.2 Install Visual Studio Express

Microsoft Visual Studio is used to program CyberSim in C. Microsoft Visual Studio
Express is free for commercial use, and may be downloaded from:

• Microsoft Visual Studio Express 2013 for Desktop (Windows 7 and 8):

http://www.visualstudio.com/en-us/downloads

• Microsoft Visual C++ 2010 Express (Windows XP and Windows Vista):

http://www.visualstudio.com/en-us/downloads/download-visual-studio-vs

A.2. INSTALL VISUAL STUDIO EXPRESS 230

http://www.visualstudio.com/en-us/downloads
http://www.visualstudio.com/en-us/downloads/download-visual-studio-vs

APPENDIX A. LAB SETUP

A.3 Install C & C++ Development Tools

C & C++ Development Tools for NI Linux Real-Time, Eclipse Edition is used to
program the myRIO processor in C. It is distributed for free and may be downloaded
from

http://joule.ni.com/nidu/cds/view/p/id/4286/lang/en

Eclipse requires the Java Runtime Environment which may be downloaded from

http://www.java.com/getjava

Next, add the path of the compiler toolchain to the system path. From the Windows
Control Panel, open System and search for “Advanced System Settings→Environment
Variables”. Append the toolchain location to the PATH variable, ensuring that you
separate paths with a semicolon. The compile toolchain is installed by default to:

C:\Program Files (x86)\National Instruments\Eclipse\toolchain\gcc-4.4-arm\i386\bin

Remove “ (x86)” if you are on a 32-bit operating system.

Run through Lab 3.3: Program the myRIO Processor from Eclipse to ensure the
software is configured correctly and to add any firewall exceptions needed.

A.3. INSTALL C & C++ DEVELOPMENT TOOLS 231

http://joule.ni.com/nidu/cds/view/p/id/4286/lang/en
http://www.java.com/getjava

APPENDIX A. LAB SETUP

A.4 Install Xilinx SDK

Download Xilinx SDK 14.4 from the Xilinx website.

http://xilinx.com/support/download/

You will need to search to find Xilinx Software Development Kit 14.4 (2012.4). You
may need to create a Xilinx online profile to download the software.

Extract the downloaded archive and run xsetup.exe to begin installation. Once the
installer completes, run a supplemental installer that is copied by default to

C:\Xilinx\14.4\SDK\common\bin\nt64\vcredist_x64.exe

If you are not installing onto a 64 bit operating system, the path for the installer is

C:\Xilinx\14.4\SDK\common\bin\nt\vcredist_x86.exe

Plug in the Xilinx Platform USB Cable II and ensure the driver installs correctly, then
restart the machine.

If you are on a 64-bit operating system, ensure that the 64-bit SDK is in the desktop
and Start Menu (and not the 32-bit, for which JTAG drivers will not be installed).

To allow Xilinx SDK to see myRIO over JTAG, download

http://LeeSeshia.org/lab/releases/1.70/idecode.lst

and replace the existing file

C:\Xilinx\14.4\SDK\SDK\data\cse\idcode.lst

Run through Lab 3.2: Program MicroBlaze from Xilinx SDK to ensure the software
is configured correctly and to add any firewall exceptions needed.

A.4. INSTALL XILINX SDK 232

http://xilinx.com/support/download/
http://LeeSeshia.org/lab/releases/1.70/idcode.lst

APPENDIX A. LAB SETUP

A.5 myRIO JTAG Wiring

Xilinx SDK uses JTAG to download and debug applications for MicroBlaze running
on the myRIO FPGA. This is only supported on myRIO 1950, and you may need to
soldier pin headers onto the JTAG header (J5) (Fig. A.1 and Table A.1).

See myRIO JTAG Instructions L (National Instruments, 2013j) for more information
on JTAG on myRIO.

Figure A.1: JTAG pinout on myRIO 1950.

JTAG Signal JTAG Color myRIO Pin (J5)
TDO purple 1 (JTAG_TDO)

VREF red 2 (+1.8V)
TCK yellow 3 (JTAG_TCK)
TDI white 4 (JTAG_TDI)
GND black 5 (GND)
TMS green 6 (JTAG_TMS)

Table A.1: myRIO 1950 to JTAG wiring diagram.

A.5. MYRIO JTAG WIRING 233

http://LeeSeshia.org/lab/releases/1.70/documents/NationalInstruments_13_myRioJtagInstructions.pdf

APPENDIX A. LAB SETUP

A.6 myRIO iRobot Create Wiring

A complete wiring diagram is shown in Fig. A.2, and mounting of myRIO in the
iRobot Create is shown in Fig. A.3.

Run through the template project in Lab 5.10: Navigation in Statecharts (Deployment)
to verify that communication is established between myRIO and the iRobot Create. If
sensor data appears on the Front Panel, the configuration is correct.

Visit the myRIO Community4 (National Instruments, 2013h) for additional information
on myRIO.

13 12

11 10 9 8 7 6

5 4 3 2 1

iRobot Create cargo bay connector

25 24

23 22 21 20 17 17 17 16 15 14

myRIO Vcc+
iRobot Cargo Pin 12 (+VBat)

myRIO Vcc‐
iRobot Cargo Pin 25 (GND)

iRobot Cargo Pin 1 (UART RX)

iRobot Cargo Pin 14 (GND)

iRobot Cargo Pin 2 (UART TX)

iRobot Cargo Pin 14 (GND)

myRIO MXP A connector

Figure A.2: iRobot Create and myRIO wiring diagram. Pinout diagrams replicated from
the iRobot Create Open Interface (OI) Specification (iRobot, 2006a).

A.6. MYRIO IROBOT CREATE WIRING 234

http://decibel.ni.com/content/community/academic/products_and_projects/myrio

APPENDIX A. LAB SETUP

z+

y+

x+

Figure A.3: Mounting of myRIO in the iRobot Create, and the resulting coordinate system
for the onboard accelerometer.

A.6. MYRIO IROBOT CREATE WIRING 235

APPENDIX A. LAB SETUP

A.7 Kobuki Wiring

Run through the template project in Lab 6.10: Navigation in Statecharts (Deployment)
to verify that communication is established between myRIO and the Kobuki. If sensor
data appears on the Front Panel, the configuration is correct.

Visit the myRIO Community4 (National Instruments, 2013h) for additional information
on myRIO.

Figure A.4: Kobuki wiring diagram. Pinout diagrams replicated from the Kobuki User
Guide Kobuki User Guide4 (YujinRobot, 2014d).

A.7. KOBUKI WIRING 236

http://decibel.ni.com/content/community/academic/products_and_projects/myrio
http://kobuki.yujinrobot.com/home-en/documentation/online-user-guide/

Bibliography

Bluetooth Special Interest Group, 2003: Bluetooth HID Profile. v1.0. Available: https://bluetooth.org/
Technical/Specifications/adopted.htm.

Brooks, C., 2008: Project Management Instructions. Available: http://technology.berkeley.edu/cio/
tpo/project/pmresources/tools/Project_Charter_Instructions.doc.

—, 2012a: EECS Instructional Public Documentation - SVN Help. Available: https://inst.eecs.

berkeley.edu/cgi-bin/pub.cgi?file=svn.help.

—, 2012b: Project Management and Embedded Systems. lecture slides for EECS 149, University of California,
Berkeley. Available: http://chess.eecs.berkeley.edu/eecs149/projects/Brooks_eecs149_

sp12_ProjectManagementOverview.ppt.

Defense Advanced Research Projects Agency, 2012: Single chip timing and inertial measurement unit.
Available: https://commons.wikimedia.org/wiki/File:DARPA_TIMU_Michigan_Penny.jpg.

Dudek, G. and M. Jenkin, 2000: Computational Principles of Mobile Robotics. Cambridge University Press.

Eclipse Foundation, 2013a: Eclipse. Available: http://eclipse.org.

—, 2013b: Eclipse Juno Documentation. Available: http://help.eclipse.org/juno/.

Fisher, C. J., 2010: Using an Accelerometer for Inclination Sensing. Analog Devices application note
AN-1057 v0. Available: http://analog.com/static/imported-files/application_notes/

AN-1057.pdf.

237

https://bluetooth.org/Technical/Specifications/adopted.htm
https://bluetooth.org/Technical/Specifications/adopted.htm
http://technology.berkeley.edu/cio/tpo/project/pmresources/tools/Project_Charter_Instructions.doc
http://technology.berkeley.edu/cio/tpo/project/pmresources/tools/Project_Charter_Instructions.doc
https://inst.eecs.berkeley.edu/cgi-bin/pub.cgi?file=svn.help
https://inst.eecs.berkeley.edu/cgi-bin/pub.cgi?file=svn.help
http://chess.eecs.berkeley.edu/eecs149/projects/Brooks_eecs149_sp12_ProjectManagementOverview.ppt
http://chess.eecs.berkeley.edu/eecs149/projects/Brooks_eecs149_sp12_ProjectManagementOverview.ppt
https://commons.wikimedia.org/wiki/File:DARPA_TIMU_Michigan_Penny.jpg
http://eclipse.org
http://help.eclipse.org/juno/
http://analog.com/static/imported-files/application_notes/AN-1057.pdf
http://analog.com/static/imported-files/application_notes/AN-1057.pdf

BIBLIOGRAPHY

Freescale Semiconductor, 2013: Xtrinsic MMA8452Q 3-Axis 12-bit/8-bit Digital Accelerometer. docu-
ment #MMA8452Q. Available: http://cache.freescale.com/files/sensors/doc/data_sheet/
MMA8452Q.pdf.

Hickok, T., 2009: MicroBlaze Interrupts and the EDK. Available: http://chess.eecs.berkeley.edu/
eecs149/documentation/th_ublaze_interrupts.pdf.

iRobot, 2006a: Create Open Interface Specification. v2. Available: http://irobot.com/filelibrary/
create/Create%20Open%20Interface_v2.pdf.

—, 2006b: Create Owner’s Guide. v430.06. Available: http://irobot.com/filelibrary/create/

Create%20Manual_Final.pdf.

—, 2013: iRobot Create Product Page. Available: http://irobot.com/create.

Jensen, J. C., E. A. Lee, and S. A. Seshia, 2011: An introductory capstone design course on embedded systems.
In IEEE International Symposium on Circuits & Systems (ISCAS), special session: Design, Project, &
Learning Technology Innovations in Circuits, Signals, & Systems Education, Rio de Janeiro, Brazil, pp.
1199–1202. doi:10.1109/ISCAS.2011.5937784.

—, 2012: Teaching embedded systems the berkeley way.

Kodosky, J., J. MacCrisken, and G. Rymar, 1991: Visual programming using structured data flow. In IEEE
Workshop on Visual Languages, IEEE Computer Society Press, Kobe, Japan, pp. 34–39.

Kung, S., L. Onken, and S. Large, 2011: Tortoise SVN. Available: http://tortoisesvn.net/docs/

release/TortoiseSVN_en/.

Lee, E. A., 2006: The problem with threads. Tech. Rep. UCB/EECS-2006-1, EECS Department, University of
California, Berkeley. Available: http://eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.
html.

Lee, E. A. and S. A. Seshia, 2010: An introductory textbook on cyber-physical systems. In Proc. Workshop on
Embedded Systems Education (WESE), pp. 1–6. doi:10.1145/1930277.1930278.

—, 2015: Introduction to Embedded Systems. v2.0. Available: http://LeeSeshia.org.

Lee, E. A., S. A. Seshia, and J. C. Jensen, 2013: EECS 149 - Introduction to Embedded Systems. course
website. Available: http://chess.eecs.berkeley.edu/eecs149.

Microsoft, 2014a: Visual Studio. Available: http://www.visualstudio.com/en-us/products/

visual-studio-express-vs.aspx.

—, 2014b: Visual Studio Get Started. Available: http://www.visualstudio.com/get-started/

overview-of-get-started-tasks-vs.

National Instruments, 2010: LabVIEW Quick Reference Card. P/N #373353D-01. Available: http://ni.
com/pdf/manuals/373353d.pdf.

238

http://cache.freescale.com/files/sensors/doc/data_sheet/MMA8452Q.pdf
http://cache.freescale.com/files/sensors/doc/data_sheet/MMA8452Q.pdf
http://chess.eecs.berkeley.edu/eecs149/documentation/th_ublaze_interrupts.pdf
http://chess.eecs.berkeley.edu/eecs149/documentation/th_ublaze_interrupts.pdf
http://irobot.com/filelibrary/create/Create%20Open%20Interface_v2.pdf
http://irobot.com/filelibrary/create/Create%20Open%20Interface_v2.pdf
http://irobot.com/filelibrary/create/Create%20Manual_Final.pdf
http://irobot.com/filelibrary/create/Create%20Manual_Final.pdf
http://irobot.com/create
http://dx.doi.org/10.1109/ISCAS.2011.5937784
http://tortoisesvn.net/docs/release/TortoiseSVN_en/
http://tortoisesvn.net/docs/release/TortoiseSVN_en/
http://eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.html
http://eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.html
http://dx.doi.org/10.1145/1930277.1930278
http://LeeSeshia.org
http://chess.eecs.berkeley.edu/eecs149
http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
http://www.visualstudio.com/get-started/overview-of-get-started-tasks-vs
http://www.visualstudio.com/get-started/overview-of-get-started-tasks-vs
http://ni.com/pdf/manuals/373353d.pdf
http://ni.com/pdf/manuals/373353d.pdf

BIBLIOGRAPHY

—, 2012a: Developing Algorithms Using LabVIEW MathScript RT Module: Part 1 - The LabVIEW
MathScript Node. Available: http://www.ni.com/white-paper/3256/en.

—, 2012b: Developing Applications with the NI LabVIEW Statechart Module. Available: http://zone.ni.
com/devzone/cda/tut/p/id/6194.

—, 2012c: Getting Started with MathScript RT. P/N #373123C-01. Available: http://zone.ni.com/

reference/en-XX/help/373123C-01/lvtextmathmain/ms_getting_started/.

—, 2012d: LabVIEW Statechart Module Help. P/N #372103D-01. Available: http://zone.ni.com/

reference/en-XX/help/372103D-01/.

—, 2012e: MathScript RT Module Functions. P/N #373123C-01. Available: http://zone.ni.com/

reference/en-XX/help/373123C-01/lvtextmath/msfunc_classes/.

—, 2013a: C Support for NI myRIO User Guide. Available: http://joule.ni.com/nidu/cds/view/p/
id/4259/lang/en.

—, 2013b: Getting Started with LabVIEW. P/N #373427J-01. Available: http://ni.com/pdf/manuals/
373427j.pdf.

—, 2013c: LabVIEW 2013 Help. P/N #371361K-01. Available: http://zone.ni.com/reference/

en-XX/help/371361K-01/.

—, 2013d: LabVIEW 2013 Real-Time Module Help. P/N #370622L-01. Available: http://zone.ni.com/
reference/en-XX/help/370622L-01/.

—, 2013e: LabVIEW Product Page. Available: http://ni.com/labview.

—, 2013f: LabVIEW Robotics Simulator Wizard. P/N #372983D-01. Available: http://zone.ni.com/
reference/en-XX/help/372983D-01/lvrobodialog/robo_sim_wizard/.

—, 2013g: myRIO 1950 User Guide and Specifications.

—, 2013h: myRIO Community. Available: http://decibel.ni.com/content/community/academic/
products_and_projects/myrio.

—, 2013i: myRIO Getting Started. Available: http://ni.com/myrio/setup/getting-started/.

—, 2013j: myRIO JTAG Instructions.

—, 2013k: myRIO Product Page. Available: http://ni.com/myrio.

—, 2013l: myRIO Shipping Personality Reference. Available: http://www.ni.com/white-paper/14655/
en.

—, 2014: Learn LabVIEW. Available: http://www.ni.com/academic/students/learn-labview/.

Nintendo, 2013: Nintendo Controllers. Available: http://nintendo.com/wii/console/controllers.

239

http://www.ni.com/white-paper/3256/en
http://zone.ni.com/devzone/cda/tut/p/id/6194
http://zone.ni.com/devzone/cda/tut/p/id/6194
http://zone.ni.com/reference/en-XX/help/373123C-01/lvtextmathmain/ms_getting_started/
http://zone.ni.com/reference/en-XX/help/373123C-01/lvtextmathmain/ms_getting_started/
http://zone.ni.com/reference/en-XX/help/372103D-01/
http://zone.ni.com/reference/en-XX/help/372103D-01/
http://zone.ni.com/reference/en-XX/help/373123C-01/lvtextmath/msfunc_classes/
http://zone.ni.com/reference/en-XX/help/373123C-01/lvtextmath/msfunc_classes/
http://joule.ni.com/nidu/cds/view/p/id/4259/lang/en
http://joule.ni.com/nidu/cds/view/p/id/4259/lang/en
http://ni.com/pdf/manuals/373427j.pdf
http://ni.com/pdf/manuals/373427j.pdf
http://zone.ni.com/reference/en-XX/help/371361K-01/
http://zone.ni.com/reference/en-XX/help/371361K-01/
http://zone.ni.com/reference/en-XX/help/370622L-01/
http://zone.ni.com/reference/en-XX/help/370622L-01/
http://ni.com/labview
http://zone.ni.com/reference/en-XX/help/372983D-01/lvrobodialog/robo_sim_wizard/
http://zone.ni.com/reference/en-XX/help/372983D-01/lvrobodialog/robo_sim_wizard/
http://decibel.ni.com/content/community/academic/products_and_projects/myrio
http://decibel.ni.com/content/community/academic/products_and_projects/myrio
http://ni.com/myrio/setup/getting-started/
http://ni.com/myrio
http://www.ni.com/white-paper/14655/en
http://www.ni.com/white-paper/14655/en
http://www.ni.com/academic/students/learn-labview/
http://nintendo.com/wii/console/controllers

BIBLIOGRAPHY

Orlando, G., 2010: Wii remote image. Creative Commons BY-SA 3.0 via Wikipedia. Available: http:

//en.wikipedia.org/wiki/File:Wiimote.png.

Ozyagcilar, T., 2011: Implementing a Tilt-Compensated eCompass using Accelerometer and Magnetometer
Sensors. Analog Devices application note AN-4248 v2. Available: http://freescale.com/files/
sensors/doc/app_note/AN4248.pdf.

Smith, R., 2012: Open dynamics engine. Available: http://ode.org.

SparkFun Electronics, 2013: Triple Axis Accelerometer Breakout - ADXL335. CC BY-NC-SA 3.0. Available:
http://sparkfun.com/products/9269.

Stoops, M., 2008: Wii remote uncovered. GNU Free Documentation License 1.2. Available: http://

wiibrew.org/wiki/File:Wii_Remote_uncovered.jpg.

Suvasa, E., 2011: Gnu logo. Free Art License. Available: https://en.wikipedia.org/wiki/File:

Heckert_GNU_white.svg.

Tortoise SVN Team, 2013: Tortoise SVN Product Page. Available: http://tortoisesvn.net/.

Washington, C., 2009: Designing Applications with the NI LabVIEW Statechart Module. National Instruments
webcast. Available: http://www.ni.com/webcast/225/en/.

WiiBrew, 2012: WiiMote. Available: http://wiibrew.org/wiki/Wiimote.

Wikipedia, 2013a: Joint Test Action Group. Available: http://en.wikipedia.org/wiki/Jtag.

—, 2013b: Milestone (Project Management). Available: http://en.wikipedia.org/wiki/Milestone_
(project_management).

—, 2013c: Project Charter. Available: http://en.wikipedia.org/wiki/Project_charter.

—, 2013d: Wii Remote. Available: http://en.wikipedia.org/wiki/Wii_Remote.

—, 2013e: Work Breakdown Structure. Available: http://en.wikipedia.org/wiki/Work_breakdown_
structure.

Xilinx, 2012a: Embedded System Tools Reference Manual. UG111 v14.3. Available: http://xilinx.com/
support/documentation/sw_manuals/xilinx14_4/est_rm.pdf.

—, 2012b: LogiCORE IP AXI Timer. DS764 v1.03.a. Available: http://xilinx.com/support/

documentation/ip_documentation/axi_timer/v1_03_a/axi_timer_ds764.pdf.

—, 2012c: MicroBlaze Processor Reference Guide. UG081 v14.4. Available: http://xilinx.com/

support/documentation/sw_manuals/xilinx14_4/mb_ref_guide.pdf.

—, 2013a: EDK support. Available: http://xilinx.com/support/index.html/content/xilinx/en/
supportNav/design_tools/embedded_development_kit__edk.html.

240

http://en.wikipedia.org/wiki/File:Wiimote.png
http://en.wikipedia.org/wiki/File:Wiimote.png
http://freescale.com/files/sensors/doc/app_note/AN4248.pdf
http://freescale.com/files/sensors/doc/app_note/AN4248.pdf
http://ode.org
http://sparkfun.com/products/9269
http://wiibrew.org/wiki/File:Wii_Remote_uncovered.jpg
http://wiibrew.org/wiki/File:Wii_Remote_uncovered.jpg
https://en.wikipedia.org/wiki/File:Heckert_GNU_white.svg
https://en.wikipedia.org/wiki/File:Heckert_GNU_white.svg
http://tortoisesvn.net/
http://www.ni.com/webcast/225/en/
http://wiibrew.org/wiki/Wiimote
http://en.wikipedia.org/wiki/Jtag
http://en.wikipedia.org/wiki/Milestone_(project_management)
http://en.wikipedia.org/wiki/Milestone_(project_management)
http://en.wikipedia.org/wiki/Project_charter
http://en.wikipedia.org/wiki/Wii_Remote
http://en.wikipedia.org/wiki/Work_breakdown_structure
http://en.wikipedia.org/wiki/Work_breakdown_structure
http://xilinx.com/support/documentation/sw_manuals/xilinx14_4/est_rm.pdf
http://xilinx.com/support/documentation/sw_manuals/xilinx14_4/est_rm.pdf
http://xilinx.com/support/documentation/ip_documentation/axi_timer/v1_03_a/axi_timer_ds764.pdf
http://xilinx.com/support/documentation/ip_documentation/axi_timer/v1_03_a/axi_timer_ds764.pdf
http://xilinx.com/support/documentation/sw_manuals/xilinx14_4/mb_ref_guide.pdf
http://xilinx.com/support/documentation/sw_manuals/xilinx14_4/mb_ref_guide.pdf
http://xilinx.com/support/index.html/content/xilinx/en/supportNav/design_tools/embedded_development_kit__edk.html
http://xilinx.com/support/index.html/content/xilinx/en/supportNav/design_tools/embedded_development_kit__edk.html

BIBLIOGRAPHY

—, 2013b: LogiCORE IP AXI INTC. DS747 v1.04.a. Available: http://xilinx.com/support/

documentation/ip_documentation/axi_intc/v1_04_a/ds747_axi_intc.pdf.

—, 2013c: MicroBlaze Soft Processor Core. Available: http://xilinx.com/tools/microblaze.htm.

YujinRobot, 2014a: Kobuki C++ Driver Specification. Available: https://yujinrobot.github.io/

kobuki/doxygen/enMainPage.html.

—, 2014b: Kobuki Documentation. Available: http://kobuki.yujinrobot.com/home-en/

documentation/.

—, 2014c: Kobuki Quick Guide. Available: http://kobuki.yujinrobot.com/files/3413/5752/

0704/kobuki_quickguide_A3.pdf.

—, 2014d: Kobuki User Guide. Available: http://kobuki.yujinrobot.com/home-en/

documentation/online-user-guide/.

241

http://xilinx.com/support/documentation/ip_documentation/axi_intc/v1_04_a/ds747_axi_intc.pdf
http://xilinx.com/support/documentation/ip_documentation/axi_intc/v1_04_a/ds747_axi_intc.pdf
http://xilinx.com/tools/microblaze.htm
https://yujinrobot.github.io/kobuki/doxygen/enMainPage.html
https://yujinrobot.github.io/kobuki/doxygen/enMainPage.html
http://kobuki.yujinrobot.com/home-en/documentation/
http://kobuki.yujinrobot.com/home-en/documentation/
http://kobuki.yujinrobot.com/files/3413/5752/0704/kobuki_quickguide_A3.pdf
http://kobuki.yujinrobot.com/files/3413/5752/0704/kobuki_quickguide_A3.pdf
http://kobuki.yujinrobot.com/home-en/documentation/online-user-guide/
http://kobuki.yujinrobot.com/home-en/documentation/online-user-guide/

What is the feeling when you’re driving away from people,
and they recede on the plain
till you see their specks dispersing?

It’s the too huge world vaulting us,
and it’s goodbye.

But we lean forward
to the next crazy venture
beneath the skies.

–Jack Kerouac, On the Road

242

	Preface
	Equipment
	Equipment: WiiMote
	Equipment: myRIO
	Equipment: MicroBlaze
	Equipment: iRobot Create
	Equipment: iClebo Kobuki
	Equipment: The myRIO Accelerometer
	Equipment: Microsoft Visual Studio
	Equipment: Eclipse
	Equipment: LabVIEW
	Equipment: CyberSim

	Sensor Interfacing and Calibration
	Interface to and Calibrate the WiiMote

	Embedded Development Tools
	Connect to and Configure myRIO
	Program MicroBlaze from Xilinx SDK
	Program the myRIO Processor from Eclipse
	Program the myRIO Processor from LabVIEW

	Programming Embedded Systems
	Generate Tones in MicroBlaze
	Program an ADC in MicroBlaze

	The Cal Climber: CPS Design with the iRobot Create
	Navigation Design Requirements
	Hill Climb Design Requirements
	Program CyberSim from Visual Studio
	Navigation in C (Simulation)
	Navigation in C (Deployment)
	Hill Climb in C (Simulation)
	Hill Climb in C (Deployment)
	Program CyberSim from LabVIEW
	Navigation in Statecharts (Simulation)
	Navigation in Statecharts (Deployment)
	Hill Climb in Statecharts (Simulation)
	Hill Climb in Statecharts (Deployment)

	The Cal Klimber: CPS Design with the Kobuki
	Navigation Design Requirements
	Hill Climb Design Requirements
	Program CyberSim from Visual Studio
	Navigation in C (Simulation)
	Navigation in C (Deployment)
	Hill Climb in C (Simulation)
	Hill Climb in C (Deployment)
	Program CyberSim from LabVIEW
	Navigation in Statecharts (Simulation)
	Navigation in Statecharts (Deployment)
	Hill Climb in Statecharts (Simulation)
	Hill Climb in Statecharts (Deployment)

	Projects
	Project Management

	Lab Setup
	Install LabVIEW
	Install Visual Studio Express
	Install C & C++ Development Tools
	Install Xilinx SDK
	myRIO JTAG Wiring
	myRIO iRobot Create Wiring
	Kobuki Wiring

	Bibliography
	Index

